Skip to main content
Log in

SolidEarth: a new Digital Earth system for the modeling and visualization of the whole Earth space

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Although many of the first-generation Digital Earth systems have proven to be quite useful for the modeling and visualization of geospatial objects relevant to the Earth’s surface and near-surface, they were not designed for the purpose of modeling and application in geological or atmospheric space. There is a pressing need for a new Digital Earth system that can process geospatial information with full dimensionality. In this paper, we present a new Digital Earth system, termed SolidEarth, as an alternative virtual globe for the modeling and visualization of the whole Earth space including its surface, interior, and exterior space. SolidEarth consists of four functional components: modeling in geographical space, modeling in geological space, modeling in atmospheric space, and, integrated visualization and analysis. SolidEarth has a comprehensive treatment to the third spatial dimension and a series of sophisticated 3D spatial analysis functions. Therefore, it is well-suited to the volumetric representation and visual analysis of the inner/ outer spheres in Earth space. SolidEarth can be used in a number of fields such as geoscience research and education, the construction of Digital Earth applications, and other professional practices of Earth science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey J E, Chen A (2011). The role of Virtual Globes in geoscience. Comput Geosci, 37(1): 1–2

    Article  Google Scholar 

  • Bernardin T, Cowgill E, Kreylos O, Bowles C, Gold P, Hamann B, Kellogg L (2011). Crusta: a new virtual globe for real-time visualization of sub-meter digital topography at planetary scales. Comput Geosci, 37(1): 75–85

    Article  Google Scholar 

  • Bilitza D (2001). International Reference Ionosphere 2000. Radio Sci, 36(2): 261–275

    Article  Google Scholar 

  • Butler D (2006). Virtual globes: the web-wide world. Nature, 439(7078): 776–778

    Article  Google Scholar 

  • Calcagno P, Chilès J P, Courrioux G, Guillen A (2008). Geological modelling from field data and geological knowledge: part I. Modelling method coupling 3D potential-field interpolation and geological rules. Phys Earth Planet Inter, 171(1–4): 147–157

    Article  Google Scholar 

  • Craglia M, de Bie K, Jackson D, Pesaresi M, Remetey-Fülöpp G, Wang C, Annoni A, Bian L, Campbell F, Ehlers M, van Genderen J, Goodchild M, Guo H, Lewis A, Simpson R, Skidmore A, Woodgate P (2012). Digital Earth 2020: towards the vision for the next decade. Int J Digital Earth, 5(1): 4–21

    Article  Google Scholar 

  • Craglia M, Goodchild M F, Annoni A, Camara G, Gould M, Kuhn W, Mark D, Masser I, Maguire D, Liang S, Parsons E (2008). Nextgeneration Digital Earth: a position paper from the Vespucci Initiative for the advancement of Geographic Information Science. Int J Spatial Data Infrastructures Res, 3: 146–167

    Google Scholar 

  • de Floriani L, Falcidieno B (1988). A hierarchical boundary model for solid object representation. ACM Trans Graph, 7(1): 42–60

    Article  Google Scholar 

  • De Paor D G, Whitmeyer S J (2011). Geological and geophysical modeling on virtual globes using KML, COLLADA, and Javascript. Comput Geosci, 37(1): 100–110

    Article  Google Scholar 

  • Denver L F, Phillips D C (1990). Stratigraphic geocellular modeling. Geobyte, 5: 45–47

    Google Scholar 

  • Dong S, Li T, Gao R, Hou H, Li Q, Li Y, Zhang S, Keller G R, Liu M (2011). A multidisciplinary Earth science research program in China. Eos Trans AGU, 92(38): 313–314

    Article  Google Scholar 

  • Dziewonski A M, Anderson D L (1981). Preliminary reference Earth model. Phys Earth Planet Inter, 25(4): 297–356

    Article  Google Scholar 

  • Fowler C M R (2005). The Solid Earth: An Introduction to Global Geophysics (2nd ed). Cambridge: Cambridge University Press, 685

    Google Scholar 

  • Goodchild M F (2008). The use cases of digital earth. Int J Digital Earth, 1(1): 31–42

    Article  Google Scholar 

  • Goodchild M F (2012). Discrete global grids: retrospect and prospect. Geography and Geo-Information Science, 28(1): 1–6

    Google Scholar 

  • Goodchild M F, Guo H, Annoni A, Bian L, de Bie K, Campbell F, Craglia M, Ehlers M, van Genderen J, Jackson D, Lewis A J, Pesaresi M, Remetey-Fülöpp G, Simpson R, Skidmore A, Wang C, Woodgate P (2012). Next-generation Digital Earth. Proc Natl Acad Sci USA, 109(28): 11088–11094

    Article  Google Scholar 

  • Gore A (1999). The Digital Earth: Understanding our planet in the 21st Century. Photogramm Eng Remote Sensing, 65: 528–530

    Google Scholar 

  • Guillen A, Calcagno P, Courrioux G, Joly A, Ledru P (2008). Geological modelling from field data and geological knowledge: part II. Modelling validation using gravity and magnetic data inversion. Phys Earth Planet Inter, 171(1–4): 158–169

    Article  Google Scholar 

  • Guo H (2012). Digital Earth: a new challenge and new vision. Int J Digital Earth, 5(1): 1–3

    Article  Google Scholar 

  • Hack R, Orlic B, Ozmutlu S, Zhu S, Rengers N (2006). Three and more dimensional modeling in geo-engineering. Bull Eng Geol Environ, 65(2): 143–153

    Article  Google Scholar 

  • Jones C B (1989). Data structures for three-dimensional spatial information systems in geology. Int J Geogr Inform Syst, 3: 15–31

    Google Scholar 

  • Kennett B L N, Engdahl E R, Buland R (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophys J Int, 122(1): 108–124

    Article  Google Scholar 

  • Li J, Wu H, Yang C, Wong D W, Xie J (2011). Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD strategy within virtual globes. Comput Geosci, 37(9): 1295–1302

    Article  Google Scholar 

  • Li Z, Openshaw S (1993). A natural principle for the objective generalization of digital maps. Cartography and Geographic Information Systems, 20(1): 19–29

    Article  Google Scholar 

  • Martínez-Graña A M, Goy J L, Cimarra C A (2013). A virtual tour of geological heritage: valourising geodiversity using Google Earth and QR code. Comput Geosci, 61: 83–93

    Article  Google Scholar 

  • Mooney W D, Laske G, Masters T G (1998). CRUST 5.1: a global crustal model at 5°×5°. J Geophys Res, 103(B1): 727–74

    Article  Google Scholar 

  • Navin J, de Hoog M (2011). Presenting geoscience using virtual globes. AusGeo News, 104: 15–19

    Google Scholar 

  • Picone J M, Hedin A E, Drob D P, Aikin A C (2002). NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res, 107(A12): 1468–1483

    Article  Google Scholar 

  • Postpischl L, Danecek P, Morelli A, Pondrelli S (2011). Standardization of seismic tomographic models and earthquake focal mechanisms data sets based on web technologies, visualization with keyhole markup language. Comput Geosci, 37(1): 47–56

    Article  Google Scholar 

  • Royse K R, Rutter H K, Entwisle D C (2009). Property attribution of 3D geological models in the Thames Gateway, London: new ways of visualising geoscientific information. Bull Eng Geol Environ, 68(1): 1–16

    Article  Google Scholar 

  • Shen D, Wong D W, Camelli F, Liu Y (2013). An ArcScene plug-in for volumetric data conversion, modeling and spatial analysis. Comput Geosci, 61: 104–115

    Article  Google Scholar 

  • Turner A K (2006). Challenges and trends for geological modelling and visualization. Bull Eng Geol Environ, 65(2): 109–127

    Article  Google Scholar 

  • Wang P, Xu Q, Li J S (2005). 3D modeling and visualization simulation of near-earth space environment elements. Journal of System Simulation, 17: 2957–2960 (in Chinese)

    Google Scholar 

  • Wang Y, Huynh G, Williamson C (2013). Integration of Google Maps/Earth with microscale meteorology models and data visualization. Comput Geosci, 61: 23–31

    Article  Google Scholar 

  • Wu L X (2004). Topological relations embodied in a generalized triprism (GTP) model for a 3D geoscience modeling system. Comput Geosci, 30(4): 405–418

    Article  Google Scholar 

  • Wu Q, Xu H (2004). On three-dimensional geological modeling and visualization. Sci China Earth Sci, 47(8): 739–748

    Article  Google Scholar 

  • Wu Q, Xu H, Zou X (2005). An effective method for 3D geological modeling with multi-source data integration. Comput Geosci, 31(1): 35–43

    Article  Google Scholar 

  • Yang C, Raskin R, Goodchild M, Gahegan M (2010). Geospatial cyberinfrastructure: past, present and future. Comput Environ Urban Syst, 34(4): 264–277

    Article  Google Scholar 

  • Yu J Q, Wu L X, Zi G J, Guo Z Z (2012). SDOG-based multi-scale 3D modeling and visualization on global lithosphere. Sci China Earth Sci, 55(6): 1012–1020

    Article  Google Scholar 

  • Yu L, Gong P (2012). Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives. Int J Remote Sens, 33(12): 3966–3986

    Article  Google Scholar 

  • Zhang L Q, Guo Z F, Kang Z Z, Zhang L X, Zhang XM, Yang L (2009). Web-based visualization of spatial objects in 3DGIS. Sci China Inform. Sci., 52: 1588–1597

    Article  Google Scholar 

  • Zhu L, Wang X, Zhang B (2014). Modeling and visualizing borehole information on virtual globes using KML. Comput Geosci, 62: 62–70

    Article  Google Scholar 

  • Zhu L, Zhang C, Li M, Pan X, Sun J (2012). Building 3D solid models of sedimentary stratigraphic systems from borehole data: an automatic method and case studies. Eng Geol, 127: 1–13

    Article  Google Scholar 

  • Zhu L, Zhuang Z (2010). Framework system and research flow of uncertainty in 3D geological structure models. Min Sci Technol, 20: 306–311

    Google Scholar 

  • Zhu Q, Gong J, Zhang Y (2007). An efficient 3D R-tree spatial index method for virtual geographic environments. ISPRS J Photogramm Remote Sens, 62(3): 217–224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangfeng Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Sun, J., Li, C. et al. SolidEarth: a new Digital Earth system for the modeling and visualization of the whole Earth space. Front. Earth Sci. 8, 524–539 (2014). https://doi.org/10.1007/s11707-014-0438-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-014-0438-7

Keywords

Navigation