Skip to main content
Log in

Bismuth telluride nanostructures: preparation, thermoelectric properties and topological insulating effect

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Bismuth telluride is known to wield unique properties for a wide range of device applications. However, as devices migrate to the nanometer scale, significant amount of studies are being conducted to keep up with the rapidly growing nanotechnological field. Bi2Te3 possesses distinctive properties at the nanometer level from its bulk material. Therefore, varying synthesis and characterization techniques are being employed for the realization of various Bi2Te3 nanostructures in the past years. A considerable number of these works have aimed at improving the thermoelectric (TE) figure-of-merit (ZT) of the Bi2Te3 nanostructures and drawing from their topological insulating properties. This paper reviews the various Bi2Te3 and Bi2Te3-based nanostructures realized via theoretical and experimental procedures. The study probes the preparation techniques, TE properties and the topological insulating effects of 0D, 1D, 2D and Bi2Te3 nanocomposites. With several applications as a topological insulator (TI), the topological insulating effect of the Bi2Te3 is reviewed in detail with the time reversal symmetry (TRS) and surface state spins which characterize TIs. Schematics and preparation methods for the various nanostructural dimensions are accordingly categorized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonificio W D, Clarke D R. Bacterial recovery and recycling of tellurium from tellurium-containing compounds by Pseudoalteromonas sp. EPR3. Journal of Applied Microbiology, 2014, 117(5): 1293–1304

    Google Scholar 

  2. Bark H, Kim J S, Kim H, et al. Effect of multiwalled carbon nanotubes on the thermoelectric properties of a bismuth telluride matrix. Current Applied Physics, 2013, 13(Supplement 2): S111–S114

    Google Scholar 

  3. Touzelbaev M N, Zhou P, Venkatasubramanian R, et al. Thermal characterization of Bi2Te3/Sb2Te3 superlattices. Journal of Applied Physics, 2001, 90(2): 763–767

    Google Scholar 

  4. Zhang H T, Luo X G, Wang C H, et al. Characterization of nanocrystalline bismuth telluride (Bi2Te3) synthesized by a hydrothermal method. Journal of Crystal Growth, 2004, 265(3–4): 558–562

    Google Scholar 

  5. Toprak M, Zhang Y, Muhammed M. Chemical alloying and characterization of nanocrystalline bismuth telluride. Materials Letters, 2003, 57(24–25): 3976–3982

    Google Scholar 

  6. Cao Y, Waugh J A, Zhang X W, et al. Mapping the orbital wavefunction of the surface states in three-dimensional topological insulators. Nature Physics, 2013, 9(8): 499–504

    Google Scholar 

  7. McCulley M J, Neudeck GW, Liedl G L. Electrical properties of rf sputtered bismuth telluride thin films. Journal of Vacuum Science & Technology, 1973, 10(2): 391

    Google Scholar 

  8. Noro H, Sato K, Kagechika H. The thermoelectric properties and crystallography of Bi-Sb-Te-Se thin films grown by ion beam sputtering. Journal of Applied Physics, 1993, 73(3): 1252–1260

    Google Scholar 

  9. Pattamatta A, Madnia C K. Modeling heat transfer in Bi2Te3-Sb2Te3 nanostructures. International Journal of Heat and Mass Transfer, 2009, 52(3–4): 860–869

    Google Scholar 

  10. Singh M P, Bhandari C M. Thermoelectric properties of bismuth telluride quantum wires. Solid State Communications, 2003, 127(9–10): 649–654

    Google Scholar 

  11. Zeng G, Bahk J H, Bowers J E, et al. Thermoelectric power generator module of 16 × 16 Bi2Te3 and 0.6% ErAs: (InGaAs)1 − x (InAlAs)x segmented elements. Applied Physics Letters, 2009, 95(8): 083503

    Google Scholar 

  12. Eremeev S V, Landolt G, Menshchikova T V, et al. Atomspecific spin mapping and buried topological states in a homologous series of topological insulators. Nature Communications, 2012, 3: 635

    Google Scholar 

  13. Jin C Q, Wang X C, Liu Q Q, et al. New quantum matters: Build up versus high pressure tuning. Science China Physics, Mechanics & Astronomy, 2013, 56(12): 2337–2350

    Google Scholar 

  14. Chiritescu C, Mortensen C, Cahill D G, et al. Lower limit to the lattice thermal conductivity of nanostructured Bi2Te3-based materials. Journal of Applied Physics, 2009, 106(7): 073503

    Google Scholar 

  15. Chen Z G, Han G, Yang L, et al. Nanostructured thermoelectric materials: Current research and future challenge. Progress in Natural Science, 2012, 22(6): 535–549

    Google Scholar 

  16. Wang Y, Liebig C, Xu X, et al. Acoustic phonon scattering in Bi2Te3/Sb2Te3 superlattices. Applied Physics Letters, 2010, 97(8): 083103

    Google Scholar 

  17. Chatterjee K, Mitra M, Kargupta K, et al. Synthesis, characterization and enhanced thermoelectric performance of structurally ordered cable-like novel polyaniline-bismuth telluride nanocomposite. Nanotechnology, 2013, 24(21): 215703 (10 pages)

    Google Scholar 

  18. Scheele M, Oeschler N, Meier K, et al. Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Advanced Functional Materials, 2009, 19(21): 3476–3483

    Google Scholar 

  19. Tu N H, Tanabe Y, Huynh K K, et al. Van der Waals epitaxial growth of topological insulator Bi2 − x SbxTe3 − y Sey ultrathin nanoplate on electrically insulating fluorophlogopite mica. Applied Physics Letters, 2014, 105: 063104

    Google Scholar 

  20. Wang N, Cai Y, Zhang R Q. Growth of nanowires. Materials Science and Engineering R: Reports, 2008, 60(1–6): 1–51

    Google Scholar 

  21. Liu Z, Wei X, Wang J, et al. Local structures around 3D metal dopants in topological insulator Bi2Se3 studied by EXAFS measurements. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(9): 094107

    Google Scholar 

  22. Hines M, Lenhardt J, Lu M, et al. Cooling effect of nanoscale Bi2Te3/Sb2Te3 multilayered thermoelectric thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2012, 30(4): 041509

    Google Scholar 

  23. Le P H, Liao C, Luo C W, et al. Thermoelectric properties of nanostructured bismuth-telluride thin films grown using pulsed laser deposition. Journal of Alloys and Compounds, 2014, 615: 546–552

    Google Scholar 

  24. Sun T, Samani M K, Khosravian N, et al. Enhanced thermoelectric properties of the n-type Bi2Te2.7Se0.3 thin films through the introduction of Pt nano inclusions by pulsed laser deposition. Nano Energy, 2014, 8: 223–230

    Google Scholar 

  25. Lee G E, Kim I H, Lim Y S, et al. Preparation and thermoelectric properties of Iodine-doped Bi2Te3-Bi2Se3 solid solutions. Journal of the Korean Physical Society, 2014, 65(5): 696–701

    Google Scholar 

  26. Chen Y R, Hwang W S, Hsieh H L, et al. Thermal and microstructure simulation of thermoelectric material Bi2Te3 grown by zone melting technique. Journal of Crystal Growth, 2014, 402: 273–284

    Google Scholar 

  27. Mehta R J, Zhang Y, Karthik C, et al. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nature Materials, 2012, 11(3): 233–240

    Google Scholar 

  28. Zhou J, Wang Y, Sharp J, et al. Optimal thermoelectric figure of merit in Bi2Te3/Sb2Te3 quantum dot nanocomposites. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(11): 115320

    Google Scholar 

  29. de Juan F, Ilan R, Bardarson J H. Robust transport signatures of topological superconductivity in topological insulator nanowires. Physical Review Letters, 2014, 113(10): 107003

    Google Scholar 

  30. Hamdou B, Beckstedt A, Kimling J, et al. The influence of a Tedepleted surface on the thermoelectric transport properties of Bi2Te3 nanowires. Nanotechnology, 2014, 25(36): 365401 (7 pages)

    Google Scholar 

  31. Tittes K, Bund A, Plieth W, et al. Electrochemical deposition of Bi2Te3 for thermoelectric microdevices. Journal of Solid State Electrochemistry, 2003, 7(10): 714–723

    Google Scholar 

  32. Pokropivny V V, Skorokhod V V. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterials science. Materials Science and Engineering C, 2007, 27(5–8): 990–993

    Google Scholar 

  33. Chen X, Liu L, Dong Y, et al. Preparation of nano-sized Bi2Te3 thermoelectric material powders by cryogenic grinding. Progress in Natural Science, 2012, 22(3): 201–206

    Google Scholar 

  34. Novaconi S, Vlazan P, Malaescu I, et al. Doped Bi2Te3 nanostructured semiconductors obtained by ultrasonically assisted hydrothermal method. Central European Journal of Chemistry, 2013, 11(10): 1599–1605

    Google Scholar 

  35. Kaspar K, Pelz U, Hillebrecht H. Polyol synthesis of nano-Bi2Te3. Journal of Electronic Materials, 2014, 43(4): 1200–1206

    Google Scholar 

  36. Kim D H, Kim C, Heo S H, et al. Influence of powder morphology on thermoelectric anisotropy of spark-plasmasintered Bi-Te-based thermoelectric materials. Acta Materialia, 2011, 59(1): 405–411

    Google Scholar 

  37. Teo J C Y, Fu L, Kane C L. Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1 − x Sbx. Physical Review B: Condensed Matter and Materials Physics, 2008, 78(4): 045426

    Google Scholar 

  38. Chen L, Zhao Q, Ruan X. Facile synthesis of ultra-small Bi2Te3 nanoparticles, nanorods and nanoplates and their morphologydependent Raman spectroscopy. Materials Letters, 2012, 82: 112–115

    Google Scholar 

  39. Zhang Y, Wang H, Kräemer S, et al. Surfactant-free synthesis of Bi2Te3-Te micro-nano heterostructure with enhanced thermoelectric figure of merit. ACS Nano, 2011, 5(4): 3158–3165

    Google Scholar 

  40. Takahashi M, Kojima M, Sato S, et al. Electric and thermoelectric properties of electrodeposited bismuth telluride (Bi2Te3) films. Journal of Applied Physics, 2004, 96(10): 5582

    Google Scholar 

  41. Zhang Y, Wang X L, Yeoh W K, et al. Electrical and thermoelectric properties of single-wall carbon nanotube doped Bi2Te3. Applied Physics Letters, 2012, 101(3): 031909

    Google Scholar 

  42. Fan S, Zhao J, Yan Q, et al. Influence of nanoinclusions on thermoelectric properties of n-type Bi2Te3 nanocomposites. Journal of Electronic Materials, 2011, 40(5): 1018–1023

    Google Scholar 

  43. Ao W Q, Wang L, Li J Q, et al. Synthesis and characterization of polythioplhene/Bi2Te3 nanocomposite thermoelectric material. Journal of Electronic Materials, 2011, 40(9): 2027–2032

    Google Scholar 

  44. Pelz U, Kaspar K, Schmidt S, et al. An aqueous-chemistry approach to nano-bismuth telluride and nano-antimony telluride as thermoelectric materials. Journal of Electronic Materials, 2012, 41(6): 1851–1857

    Google Scholar 

  45. Chowdhury I, Prasher R, Lofgreen K, et al. On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nanotechnology, 2009, 4(4): 235–238

    Google Scholar 

  46. Li F, Huang X, Sun Z, et al. Enhanced thermoelectric properties of n-type Bi2Te3-based nanocomposite fabricated by spark plasma sintering. Journal of Alloys and Compounds, 2011, 509(14): 4769–4773

    Google Scholar 

  47. Deng Y, Zhou X, Wei G, et al. Solvothermal preparation and characterization of nanocrystalline Bi2Te3 powder with different morphology. Journal of Physics and Chemistry of Solids, 2002, 63(11): 2119–2121

    Google Scholar 

  48. Chen Y L, Analytis J G, Chu J H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science, 2009, 325(5937): 178–181

    Google Scholar 

  49. Zhou B, Zhao Y, Pu L, et al. Microwave-assisted synthesis of nanocrystalline Bi2Te3. Materials Chemistry and Physics, 2006, 96(2–3): 192–196

    Google Scholar 

  50. Jiang Y, Zhu Y J, Chen L D. Microwave-assisted preparation of Bi2Te3 hollow nanospheres. Chemistry Letters, 2007, 36(3): 382–383

    Google Scholar 

  51. Kim C, Kim D H, Han Y S, et al. Fabrication of bismuth telluride nanoparticles using a chemical synthetic process and their thermoelectric evaluations. Powder Technology, 2011, 214(3): 463–468

    Google Scholar 

  52. Mi J L, Lock N, Sun T, et al. Biomolecule-assisted hydrothermal synthesis and self-assembly of Bi2Te3 nanostring-cluster hierarchical structure. ACS Nano, 2010, 4(5): 2523–2530

    Google Scholar 

  53. Xiao F, Yoo B, Lee K H, et al. Synthesis of Bi2Te3 nanotubes by galvanic displacement. Journal of the American Chemical Society, 2007, 129(33): 10068–10069

    Google Scholar 

  54. Kong D, Randel J C, Peng H, et al. Topological insulator nanowires and nanoribbons. Nano Letters, 2010, 10(1): 329–333

    Google Scholar 

  55. Lee J, Kim J, Moon W, et al. Enhanced Seebeck coefficients of thermoelectric Bi2Te3 nanowires as a result of an optimized annealing process. The Journal of Physical Chemistry C, 2012, 116(36): 19512–19516

    Google Scholar 

  56. Chen C L, Chen Y Y, Lin S J, et al. Fabrication and characterization of electrodeposited bismuth telluride films and nanowires. The Journal of Physical Chemistry C, 2010, 114(8): 3385–3389

    Google Scholar 

  57. Picht O, Müller S, Alber I, et al. Tuning the geometrical and crystallographic characteristics of Bi2Te3 nanowires by electrodeposition in ion-track membranes. The Journal of Physical Chemistry C, 2012, 116(9): 5367–5375

    Google Scholar 

  58. Cao Y Q, Zhu T J, Zhao X B. Thermoelectric Bi2Te3 nanotubes synthesized by low-temperature aqueous chemical method. Journal of Alloys and Compounds, 2008, 449(1–2): 109–112

    Google Scholar 

  59. Wang Z, Wang F, Chen H, et al. Synthesis and characterization of Bi2Te3 nanotubes by a hydrothermal method. Journal of Alloys and Compounds, 2010, 492(1–2): L50–L53

    Google Scholar 

  60. Kim S H, Park B K. Solvothermal synthesis of Bi2Te3 nanotubes by the interdiffusion of Bi and Te metals. Materials Letters, 2010, 64(8): 938–941

    Google Scholar 

  61. Wei Q, Su Y, Yang C J, et al. The synthesis of Bi2Te3 nanobelts by vapor-liquid-solid method and their electric transport properties. Journal of Materials Science, 2011, 46(7): 2267–2272

    Google Scholar 

  62. Yao Q, Zhu Y, Chen L, et al. Microwave-assisted synthesis and characterization of Bi2Te3 nanosheets and nanotubes. Journal of Alloys and Compounds, 2009, 481(1–2): 91–95

    Google Scholar 

  63. Xiao F, Yoo B, Lee K H, et al. Synthesis of Bi2Te3 nanotubes by galvanic displacement. Journal of the American Chemical Society, 2007, 129(33): 10068–10069

    Google Scholar 

  64. Zhang G, Yu Q, Yao Z, et al. Large scale highly crystalline Bi2Te3 nanotubes through solution phase nanoscale Kirkendall effect fabrication. Chemical Communications, 2009, 17(17): 2317–2319

    Google Scholar 

  65. Li X L, Cai K F, Yu D H, et al. Electrodeposition and characterization of thermoelectric Bi2Te2Se/Te multilayer nanowire arrays. Superlattices and Microstructures, 2011, 50(5): 557–562

    Google Scholar 

  66. Deng Y, Xiang Y, Song Y. Template-free synthesis and transport properties of Bi2Te3 ordered nanowire arrays via a physical vapor process. Crystal Growth & Design, 2009, 9(7): 3079–3082

    Google Scholar 

  67. Cha J J, Kong D, Hong S S, et al. Weak antilocalization in Bi2(SexTe1 − x )3 nanoribbons and nanoplates. Nano Letters, 2012, 12(2): 1107–1111

    Google Scholar 

  68. Du Y, Cai K F, Chen S, et al. Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT:PSS composite films. Applied Materials & Interfaces, 2014, 6(8): 5735–5743

    Google Scholar 

  69. Son J S, Choi M K, Han M K, et al. n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Letters, 2012, 12(2): 640–647

    Google Scholar 

  70. Li H D, Gao L, Li H, et al. Growth and band alignment of Bi2Te3 topological insulator on H-terminated Si(111) van der Waals surface. Applied Physics Letters, 2013, 102(7): 074106

    Google Scholar 

  71. Punita S, Kedar S. Morphological evolution in single-crystalline Bi2Te3 nanoparticles, nanosheet and nanotubes with different synthesis temperatures. Bulletin of Materials Science, 2013, 36(5): 765–770

    Google Scholar 

  72. Wang Z Y, Guo X, Li H D, et al. Supperlattices of Bi2Se3/In2Se3: Growth characteristics and structural properties. Applied Physics Letters, 2011, 99(2): 023112

    Google Scholar 

  73. König J D, Winkler M, Buller S, et al. Bi2Te3-Sb2Te3 superlattices grown by nanoalloying. Journal of Electronic Materials, 2011, 40(5): 1266–1270

    Google Scholar 

  74. Pettes MT, Maassen J, Jo I, et al. Effects of surface band bending and scattering on thermoelectric transport in suspended bismuth telluride nanoplates. Nano Letters, 2013, 13(11): 5316–5322

    Google Scholar 

  75. Li J, Lou W K, Zhang D, et al. Single- and few-electron states in topological-insulator quantum dots. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(11): 115303

    Google Scholar 

  76. Gurevich V L, Thellung A. Conductance and thermoelectric effect in a two-dimensional collisionless electron gas. Physical Review B: Condensed Matter and Materials Physics, 2002, 65(15): 153313

    Google Scholar 

  77. Wang X R, Wang Y, Sun Z Z. Antiresonance scattering at defect levels in the quantum conductance of a one-dimensional system. Physical Review B: Condensed Matter and Materials Physics, 2002, 65(19): 193402

    Google Scholar 

  78. Nurnus J, Bottner H, Lambrecht A. In: Proceeding of the 22nd International Conference on Thermoelectrics, 2003, 655

    Google Scholar 

  79. Zhao L, Deng H, Korzhovska I, et al. Singular robust roomtemperature spin response from topological Dirac fermions. Nature Materials, 2014, 13(6): 580–585

    Google Scholar 

  80. Hicks L D, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B: Condensed Matter and Materials Physics, 1993, 47(24): 16631–16634

    Google Scholar 

  81. Hicks L D, Harman T C, Sun X, et al. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B: Condensed Matter and Materials Physics, 1996, 53(16): R10493–R10496

    Google Scholar 

  82. Guo H, Lin Y, Shen S Q. Dimensional evolution between oneand two-dimensional topological phases. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 085413

    Google Scholar 

  83. Weng M Q, Wu M W. High-field charge transport on the surface of Bi2Se3. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(12): 125306

    Google Scholar 

  84. Termentzidis K, Pokropyvnyy O, Woda M, et al. Large thermal conductivity decrease in point defective Bi2Te3 bulk materials and superlattices. Journal of Applied Physics, 2013, 113(1): 013506

    Google Scholar 

  85. Takashiri M, Miyazaki K, Tanaka S, et al. Effect of grain size on thermoelectric properties of n-type nanocrystalline bismuth-telluride based thin films. Journal of Applied Physics, 2008, 104(8): 084302

    Google Scholar 

  86. Jiang Y, Sun Y Y, Chen M, et al. Fermi-level tuning of epitaxial Sb2Te3 thin films on graphene by regulating intrinsic defects and substrate transfer doping. Physical Review Letters, 2012, 108(6): 066809

    Google Scholar 

  87. Li H, Cao J, Zheng W, et al. Controlled synthesis of topological insulator nanoplate arrays on mica. Journal of the American Chemical Society, 2012, 134(14): 6132–6135

    Google Scholar 

  88. Kwon S D, Ju B, Yoon S J, et al. Fabrication of bismuth telluridebased alloy thin film thermoelectric devices grown by metal organic chemical vapor deposition. Journal of Electronic Materials, 2009, 38(7): 920–924

    Google Scholar 

  89. Kong D, Dang W, Cha J J, et al. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Letters, 2010, 10(6): 2245–2250

    Google Scholar 

  90. Budnik A V, Rogacheva E I, Pinegin V I, et al. Effect of initial bulk material composition on thermoelectric properties of Bi2Te3 thin films. Journal of Electronic Materials, 2013, 42(7): 1324–1329

    Google Scholar 

  91. Ridhi R, Tripathi S K. Preparation and characterization of bismuth telluride (Bi2Te3)-polyaniline (PANI) nanocomposite. AIP Conference Proceedings, 2013, 1536: 131–132

    Google Scholar 

  92. Kim H J, Han M K, Yo C H, et al. Effects of Bi2Se3 nanoparticle inclusions on the microstructure and thermoelectric properties of Bi2Te3-based nanocomposites. Journal of Electronic Materials, 2012, 41(12): 3411–3416

    Google Scholar 

  93. Gooth J, Hamdou B, Dorn A, et al. Resolving the Dirac cone on the surface of Bi2Te3 topological insulator nano wires by fieldeffect measurements. Applied Physics Letters, 2014, 104(24): 243115

    Google Scholar 

  94. Biswas K G, Sands T D, Cola B A, et al. Thermal conductivity of bismuth telluride nanowire arry-epoxy composite. Applied Physics Letters, 2009, 94(22): 223116

    Google Scholar 

  95. Deng Y, Cui C W, Zhang N L, et al. Bi2Te3-Te nanocomposite formed by epitaxial growth of Bi2Te3 sheets on Te rod. Journal of Solid State Chemistry, 2006, 179(5): 1575–1580

    Google Scholar 

  96. Kim K T, Kim D W, Ha G H. Direct synthesis of Te/Bi2Te3 nanocomposite powders by a polyol process. Research on Chemical Intermediates, 2010, 36(6–7): 835–841

    Google Scholar 

  97. Kim K T, Koo H Y, Lee G G, et al. Synthesis of alumina nanoparticle-embedded-bismuth telluride matrix thermoelectric composite powders. Materials Letters, 2012, 82: 141–144

    Google Scholar 

  98. Zhou L, Zhang X, Zhao X, et al. Synthesis and characterization of carbon nanotube supported Bi2Te3 nanacrystals. Journal of Alloys and Compounds, 2010, 502(2): 329–332

    Google Scholar 

  99. Vigil-Galan O, Cruz-Gandarilla F, Fandiño J, et al. Physical properties of Bi2Te3 and Sb2Te3 films deposited by close space vapor transport. Semiconductor Science and Technology, 2009, 24(2): 025025

    Google Scholar 

  100. Zheng Z H, Fan P, Chen T B, et al. Optimization in fabricating bismuth telluride thin films by ion beam sputtering deposition. Thin Solid Films, 2012, 520(16): 5245–5248

    Google Scholar 

  101. Boulanger C. Thermoelectric material electroplating: a historical review. Journal of Electronic Materials, 2010, 39(9): 1818–1827

    Google Scholar 

  102. Goncalves L M, Couto C, Alpuim P, et al. Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation. Thin Solid Films, 2010, 518(10): 2816–2821

    Google Scholar 

  103. Olbrich P, Golub L E, Herrmann T, et al. Room-temperature high-frequency transport of Dirac fermions in epitaxially grown Sb2Te3- and Bi2Te3-based topological insulators. Physical Review Letters, 2014, 113(9): 096601

    Google Scholar 

  104. Peng H, Lai K, Kong D, et al. Aharonov-Bohm interference in topological insulator nanoribbons. Nature Materials, 2010, 9(3): 225–229

    Google Scholar 

  105. Sau J D, Lutchyn R M, Tewari S, et al. Generic new platform for topological quantum computation using semiconductor heterostructures. Physical Review Letters, 2010, 104(4): 040502

    Google Scholar 

  106. Das A, Ronen Y, Most Y, et al. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nature Physics, 2012, 8(12): 887–895

    Google Scholar 

  107. Mourik V, Zuo K, Frolov S M, et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science, 2012, 336(6084): 1003–1007

    Google Scholar 

  108. Zhang F, Kane C L, Mele E J. Time-reversal-invariant topological superconductivity and Majorana Kramers pairs. Physical Review Letters, 2013, 111(5): 056402

    Google Scholar 

  109. Hasan M Z, Kane C L. Topological insulators. Reviews of Modern Physics, 2010, 82(4): 3045–3067

    Google Scholar 

  110. Alexandradinata A, Fang C, Gilbert M J, et al. Spin-orbit-free topological insulators without time-reversal symmetry. Physical Review Letters, 2014, 113(11): 116403

    Google Scholar 

  111. Halász G B, Balents L. Time-reversal invariant realization of the Weyl semimetal phase. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(3): 035103

    Google Scholar 

  112. Ojanen T. Helical Fermi arcs and surface states in time-reversal invariant Weyl semimetals. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(24): 245112

    Google Scholar 

  113. Okugawa R, Murakami S. Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(23): 235315

    Google Scholar 

  114. Balents L. Weyl electrons kiss. Physics, 2011, 4: 36 (2 pages)

    Google Scholar 

  115. Arrachea L, Aligia A A. Unveiling a crystalline topological insulator in a Weyl semimetal with time-reversal symmetry. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(12): 125101

    Google Scholar 

  116. Zhang T, Cheng P, Chen X, et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Physical Review Letters, 2009, 103(26): 266803

    Google Scholar 

  117. König M, Wiedmann S, Brüne C, et al. Quantum spin hall insulator state in HgTe quantum wells. Science, 2007, 318(5851): 766–770

    Google Scholar 

  118. Xia Y, Qian D, Hsieh D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 2009, 5(6): 398–402

    Google Scholar 

  119. Hsieh D, Xia Y, Qian D, et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature, 2009, 460(7259): 1101–1105

    Google Scholar 

  120. Yan B, Zhang S C. Topological materials. Reports on Progress in Physics, 2012, 75: 096501 (23 pages)

    Google Scholar 

  121. Fu L, Kane C L, Mele E J. Topological insulators in three dimensions. Physical Review Letters, 2007, 98(10): 106803

    Google Scholar 

  122. Roy R. Topological phases and the quantum spin Hall effect in three dimensions. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(19): 195322

    Google Scholar 

  123. Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314(5806): 1757–1761

    Google Scholar 

  124. Liu C X, Qi X L, Zhang H J, et al. Model Hamiltonian for topological insulators. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(4): 045122

    Google Scholar 

  125. Luo W, Qi X L. Massive Dirac surface states in topological insulator/magnetic insulator heterostructures. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(8): 085431

    Google Scholar 

  126. Tang J, Chang L T, Kou X, et al. Electrical detection of spinpolarized surface states conduction in (Bi0.53Sb0.47)2Te3 topological insulator. Nano Letters, 2014, 14(9): 5423–5429

    Google Scholar 

  127. Qi X L, Hughes T L, Zhang S C. Topological field theory of timereversal invariant insulators. Physical Review B: Condensed Matter and Materials Physics, 2008, 78(19): 195424

    Google Scholar 

  128. Hamdou B, Gooth J, Dorn A, et al. Surface state dominated transport in topological insulator Bi2Te3 nanowires. Applied Physics Letters, 2013, 103(19): 193107

    Google Scholar 

  129. Wang C, Potter A C, Senthil T. Classification of interacting electronic topological insulators in three dimensions. Science, 2014, 343: 6171

    Google Scholar 

  130. Wang J, Li H, Chang C, et al. Anomalous anisotropic magnetoresistance in topological insulator films. Nano Research, 2012, 5(10): 739–746

    Google Scholar 

  131. Cheng L, Liu H J, Zhang J, et al. Effects of van der Waals interactions and quasiparticle corrections on the electronic and transport properties of Bi2Te3. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(8): 085118

    Google Scholar 

  132. Li L L, Xu W. Thermoelectric properties of two-dimensional topological insulators doped with nonmagnetic impurities. Journal of Applied Physics, 2014, 116(1): 013706

    Google Scholar 

  133. Lee J, Koo J, Chi C, et al. All-fiberized, passively Q-switched 1.06 μm laser using a bulk-structured Bi2Te3 topological insulator. Journal of Optics, 2014, 16(8): 085203

    Google Scholar 

  134. Xiu F, He L, Wang Y, et al. Manipulating surface states in topological insulator nanoribbons. Nature Nanotechnology, 2011, 6(4): 216–221

    Google Scholar 

  135. Yu C, Zhang G, Peng L M, et al. Thermal transport along Bi2Te3 topological insulator nanowires. Applied Physics Letters, 2014, 105(2): 023903

    Google Scholar 

  136. Checkelsky J G, Hor Y S, Liu M H, et al. Quantum interference in macroscopic crystals of nonmetallic Bi2Se3. Physical Review Letters, 2009, 103(24): 246601

    Google Scholar 

  137. Steinberg H, Gardner D R, Lee Y S, et al. Surface state transport and ambipolar electric field effect in Bi2Se3 nanodevices. Nano Letters, 2010, 10(12): 5032–5036

    Google Scholar 

  138. Matsubayashi K, Terai T, Zhou J S, et al. Superconductivity in the topological insulator Bi2Te3 under hydrostatic pressure. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(12): 125126

    Google Scholar 

  139. Li H D, Wang Z M, eds. Bismuth-Containing Compounds. New York: Springer, 2013, 1–370

    Google Scholar 

  140. Ballet P, Thomas C, Baudry X, et al. MBE growth of strained HgTe/CdTe topological insulator structures. Journal of Electronic Materials, 2014, 43(8): 2955–2962

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming M. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashalley, E., Chen, H., Tong, X. et al. Bismuth telluride nanostructures: preparation, thermoelectric properties and topological insulating effect. Front. Mater. Sci. 9, 103–125 (2015). https://doi.org/10.1007/s11706-015-0285-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-015-0285-9

Keywords

Navigation