Skip to main content
Log in

Magnesium based degradable biomaterials: A review

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Magnesium has been suggested as a revolutionary biodegradable metal for biomedical applications. The corrosion of magnesium, however, is too rapid to match the rates of tissue healing and, additionally, exhibits the localized corrosion mechanism. Thus it is necessary to control the corrosion behaviors of magnesium for their practical use. This paper comprehensively reviews the research progress on the development of representative magnesium based alloys, including Mg-Ca, Mg-Sr, Mg-Zn and Mg-REE alloy systems as well as the bulk metallic glass. The influence of alloying element on their microstructures, mechanical properties and corrosion behaviors is summarized. The mechanical and corrosion properties of wrought magnesium alloys are also discussed in comparison with those of cast alloys. Furthermore, this review also covers research carried out in the field of the degradable coatings on magnesium alloys for biomedical applications. Calcium phosphate and biodegradable polymer coatings are discussed based on different preparation techniques used. We also compare the effect of different coatings on the corrosion behaviors of magnesium alloys substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005, 26(17): 3557–3563

    Google Scholar 

  2. Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 2006, 27(7): 1013–1018

    Google Scholar 

  3. Li Z, Gu X, Lou S, et al. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials, 2008, 29(10): 1329–1344

    Google Scholar 

  4. Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet, 2007, 369(9576): 1869–1875

    Google Scholar 

  5. Haude M, Erbel R, Erne P, et al. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet, 2013, 381(9869): 836–844

    Google Scholar 

  6. Gruhl S, Witte F, Vogt J, et al. Determination of concentration gradients in bone tissue generated by a biologically degradable magnesium implant. Journal of Analytical Atomic Spectrometry, 2009, 24(2): 181–188

    Google Scholar 

  7. Krause A, Höh N, Bormann D, et al. Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae. Journal of Materials Science, 2010, 45(3): 624–632

    Google Scholar 

  8. Bowman B A, Russell R M. Present Knowledge in Nutrition. 9th ed. Washington DC: International Life Science Institute Press, 2006

    Google Scholar 

  9. Staiger M P, Pietak A M, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 2006, 27(9): 1728–1734

    Google Scholar 

  10. Zheng Y F, Gu X N, Witte F. Biodegradable metals. Materials Science and Engineering R: Reports, 2014, 77: 1–34

    Google Scholar 

  11. Saw B A. Corrosion resistance of magnesium alloy. In: Cramer D S, Covino B S, eds. ASM Handbook Volume 13A: Corrosion Fundamentals, Testing and Protection. UK: ASM International, 2003

    Google Scholar 

  12. Erdmann N, Angrisani N, Reifenrath J, et al. Biomechanical testing and degradation analysis of MgCa0.8 alloy screws: A comparative in vivo study in rabbits. Acta Biomaterialia, 2011, 7(3): 1421–1428

    Google Scholar 

  13. Gu X N, Xie X H, Li N, et al. In vitro and in vivo studies on an Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomaterialia, 2012, 8(6): 2360–2374

    Google Scholar 

  14. Tan L, Wang Q, Lin X, et al. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating. Acta Biomaterialia, 2014, 10(5): 2333–2340

    Google Scholar 

  15. Fischer J, Prosenc M H, Wolff M, et al. Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays. Acta Biomaterialia, 2010, 6(5): 1813–1823

    Google Scholar 

  16. Lorenz C, Brunner J G, Kollmannsberger P, et al. Effect of surface pre-treatments on biocompatibility of magnesium. Acta Biomaterialia, 2009, 5(7): 2783–2789

    Google Scholar 

  17. Song G. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 2007, 49(4): 1696–1701

    Google Scholar 

  18. Sun H, Li C, Xie Y, et al. Microstructures and mechanical properties of pure magnesium bars by high ratio extrusion and its subsequent annealing treatment. Transactions of Nonferrous Metals Society of China, 2012, 22(Supplement 2): s445–s449

    Google Scholar 

  19. Yamagishi H, Fukuhara M, Chiba A. Determination of the cyclic-tension fatigue of extruded pure magnesium using multiple ultrasonic waves. Materials Transactions, 2010, 51(7): 1255–1263

    Google Scholar 

  20. Witte F, Hort N, Vogt C, et al. Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 2008, 12(5–6): 63–72

    Google Scholar 

  21. Atrens A, Liu M, Zainal Abidin N I. Corrosion mechanism applicable to biodegradable magnesium implants. Materials Science and Engineering B, 2011, 176(20): 1609–1636

    Google Scholar 

  22. Gu X, Zheng Y, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009, 30(4): 484–498

    Google Scholar 

  23. Bornapour M, Muja N, Shum-Tim D, et al. Biocompatibility and biodegradability of Mg-Sr alloys: The formation of Sr-substituted hydroxyapatite. Acta Biomaterialia, 2013, 9(2): 5319–5330

    Google Scholar 

  24. Chang T C, Wang J Y, Chu C L, et al. Mechanical properties and microstructures of various Mg-Li alloys. Materials Letters, 2006, 60(27): 3272–3276

    Google Scholar 

  25. Song G, Atrens A. Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials, 1999, 1(1): 11–33

    Google Scholar 

  26. Zeng R, Zhang J, Huang W, et al. Review of studies on corrosion of magnesium alloys. Transactions of Nonferrous Metals Society of China, 2006, 16(Supplement 2): s763–s771

    Google Scholar 

  27. Zeng R, Dietzel W, Witte F, et al. Progress and challenge for magnesium alloys as biomaterials. Advanced Engineering Materials, 2008, 10(8): B3–B14

    Google Scholar 

  28. Zeng R C, Sun L, Zheng Y F, et al. Corrosion and characterization of dual phase Mg-Li-Ca alloy in Hank’s solution: The influence of microstructural features. Corrosion Science, 2014, 79: 69–82

    Google Scholar 

  29. Seiler H G, Sigel H, Sigel A. Handbook of Toxicity of Inorganic Compounds. New York: Marcel Dekker Inc., 1988

    Google Scholar 

  30. Sigel H. Metal Ions in Biological System. New York: Marcel Dekker Inc., 1986

    Google Scholar 

  31. Nakamura Y, Tsumura Y, Tonogai Y, et al. Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats. Fundamental and Applied Toxicology, 1997, 37(2): 106–116

    Google Scholar 

  32. Wan Y, Xiong G, Luo H, et al. Preparation and characterization of a new biomedical magnesium-calcium alloy. Materials & Design, 2008, 29(10): 2034–2037

    Google Scholar 

  33. Liu C L, Wang Y J, Zeng R C, et al. In vitro corrosion degradation behaviour of Mg-Ca alloy in the presence of albumin. Corrosion Science, 2010, 52(10): 3341–3347

    Google Scholar 

  34. Drynda A, Hassel T, Hoehn R, et al. Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications. Journal of Biomedical Materials Research Part A, 2010, 93A: 763–775

    Google Scholar 

  35. Jeong Y S, Kim W J. Enhancement of mechanical properties and corrosion resistance of Mg-Ca alloys through microstructural refinement by indirect extrusion. Corrosion Science, 2014, 82: 392–403

    Google Scholar 

  36. Han H-S, Yin M H, Seok H-K, et al. The modification of microstructure to improve the biodegradation and mechanical properties of a biodegradable Mg alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20: 54–60

    Google Scholar 

  37. Guo Y B, Salahshoor M. Process mechanics and surface integrity by high-speed dry milling of biodegradable magnesium-calcium implant alloys. CIRP Annals — Manufacturing Technology, 2010, 59(1): 151–154

    Google Scholar 

  38. Salahshoor M, Guo Y B. Cutting mechanics in high speed dry machining of biomedical magnesium-calcium alloy using internal state variable plasticity model. International Journal of Machine Tools & Manufacture, 2011, 51(7–8): 579–590

    Google Scholar 

  39. Sealy M P, Guo Y B. Surface integrity and process mechanics of laser shock peening of novel biodegradable magnesium-calcium (Mg-Ca) alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3(7): 488–496

    Google Scholar 

  40. Salahshoor M, Guo Y. Biodegradable orthopedic magnesium-calcium (MgCa) alloys, processing, and corrosion performance. Materials, 2012, 5(12): 135–155

    Google Scholar 

  41. Marie P J. Strontium ranelate: A physiological approach for optimizing bone formation and resorption. Bone, 2006, 38(2): 10–14

    Google Scholar 

  42. Dahl S G, Allain P, Marie P J, et al. Incorporation and distribution of strontium in bone. Bone, 2001, 28(4): 446–453

    Google Scholar 

  43. Zhang W, Shen Y, Pan H, et al. Effects of strontium in modified biomaterials. Acta Biomaterialia, 2011, 7(2): 800–808

    Google Scholar 

  44. Pors Nielsen S. The biological role of strontium. Bone, 2004, 35(3): 583–588

    Google Scholar 

  45. Brar H S, Wong J, Manuel M V. Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 7: 87–95

    Google Scholar 

  46. Avedesian M M, Baker H. ASM Specialty Handbook — Magnesium and Magnesium Alloys. Ohio: ASM International, 1999

    Google Scholar 

  47. Zhang S, Zhang X, Zhao C, et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomaterialia, 2010, 6(2): 626–640

    Google Scholar 

  48. Hofstetter J, Becker M, Martinelli E, et al. High-strength low-alloy (HSLA) Mg-Zn-Ca alloys with excellent biodegradation performance. JOM, 2014, 66(4): 566–572

    Google Scholar 

  49. Gao J H, Guan S K, Ren Z W, et al. Homogeneous corrosion of high pressure torsion treated Mg-Zn-Ca alloy in simulated body fluid. Materials Letters, 2011, 65(4): 691–693

    Google Scholar 

  50. Zhang B, Hou Y, Wang X, et al. Mechanical properties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions. Materials Science and Engineering C, 2011, 31(8): 1667–1673

    Google Scholar 

  51. Sun Y, Zhang B, Wang Y, et al. Preparation and characterization of a new biomedical Mg-Zn-Ca alloy. Materials & Design, 2012, 34: 58–64

    Google Scholar 

  52. Yin P, Li N, Lei T, et al. Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Ca alloys. Journal of Materials Science: Materials in Medicine, 2013, 24(6): 1365–1373

    Google Scholar 

  53. Cipriano A, Zhao T, Johnson I, et al. In vitro degradation of four magnesium-zinc-strontium alloys and their cytocompatibility with human embryonic stem cells. Journal of Materials Science: Materials in Medicine, 2013, 24(4): 989–1003

    Google Scholar 

  54. Guan R, Cipriano A F, Zhao Z y, et al. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications — Alloy processing, microstructure, mechanical properties, and biodegradation. Materials Science and Engineering C, 2013, 33(7): 3661–3669

    Google Scholar 

  55. Hänzi A C, Sologubenko A S, Uggowitzer P J. Design strategy for new biodegradable Mg-Y-Zn alloys for medical applications. International Journal of Materials Research, 2009, 100(8): 1127–1136

    Google Scholar 

  56. Wu Q, Zhu S, Wang L, et al. The microstructure and properties of cyclic extrusion compression treated Mg-Zn-Y-Nd alloy for vascular stent application. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 8: 1–7

    Google Scholar 

  57. Zhang E, He W, Du H, et al. Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content. Materials Science and Engineering A, 2008, 488(1–2): 102–111

    Google Scholar 

  58. Hänzi A C, Gerber I, Schinhammer M, et al. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomaterialia, 2010, 6(5): 1824–1833

    Google Scholar 

  59. Willbold E, Kalla K, Bartsch I, et al. Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal. Acta Biomaterialia, 2013, 9(10): 8509–8517

    Google Scholar 

  60. Xu L, Zhang E, Yang K. Phosphating treatment and corrosion properties of Mg-Mn-Zn alloy for biomedical application. Journal of Materials Science: Materials in Medicine, 2009, 20(4): 859–867

    Google Scholar 

  61. Xu L P, Yu G N, Zhang E, et al. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. Journal of Biomedical Materials Research Part A, 2007, 83A(3): 703–711

    Google Scholar 

  62. Zhang E, Yin D, Xu L, et al. Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application. Materials Science and Engineering C, 2009, 29(3): 987–993

    Google Scholar 

  63. Zhang E, Yang L. Microstructure, mechanical properties and biocorrosion properties of Mg-Zn-Mn-Ca alloy for biomedical application. Materials Science and Engineering A, 2008, 497(1–2): 111–118

    Google Scholar 

  64. Bae D H, Kim S H, Kim D H, et al. Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles. Acta Materialia, 2002, 50(9): 2343–2356

    Google Scholar 

  65. Pierce F S, Poon S J, Guo Q. Electron localization in metallic quasicrystals. Science, 1993, 261(5122): 737–739

    Google Scholar 

  66. Lee J Y, Kim D H, Lim H K, et al. Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys. Materials Letters, 2005, 59(29–30): 3801–3805

    Google Scholar 

  67. Rosalbino F, De Negri S, Saccone A, et al. Bio-corrosion characterization of Mg-Zn-X (X = Ca, Mn, Si) alloys for biomedical applications. Journal of Materials Science: Materials in Medicine, 2010, 21(4): 1091–1098

    Google Scholar 

  68. Zhang E, Xu L, Yu G, et al. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. Journal of Biomedical Materials Research Part A, 2009, 90A(3): 882–893

    Google Scholar 

  69. Feyerabend F, Fischer J, Holtz J, et al. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomaterialia, 2010, 6(5): 1834–1842

    Google Scholar 

  70. Birbilis N, Easton M A, Sudholz A D, et al. On the corrosion of binary magnesium-rare earth alloys. Corrosion Science, 2009, 51(3): 683–689

    Google Scholar 

  71. Friedrich H E, Mordike B L. Magnesium Technology — Metallurgy, Design Date, Applications. New York: Springer Berlin Heidelberg, 2005

    Google Scholar 

  72. Zhang X, Yuan G, Niu J, et al. Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9: 153–162

    Google Scholar 

  73. Zhang X, Yuan G, Mao L, et al. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of an Mg-Nd-Zn-Zr alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 7: 77–86

    Google Scholar 

  74. Zhang X, Yuan G, Mao L, et al. Biocorrosion properties of as-extruded Mg-Nd-Zn-Zr alloy compared with commercial AZ31 and WE43 alloys. Materials Letters, 2012, 66(1): 209–211

    Google Scholar 

  75. Zhang X, Yuan G, Wang Z. Mechanical properties and biocorrosion resistance of Mg-Nd-Zn-Zr alloy improved by cyclic extrusion and compression. Materials Letters, 2012, 74: 128–131

    Google Scholar 

  76. Chang JW, Fu P H, Guo XW, et al. The effects of heat treatment and zirconium on the corrosion behaviour of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy. Corrosion Science, 2007, 49(6): 2612–2627

    Google Scholar 

  77. Peng Q, Huang Y, Zhou L, et al. Preparation and properties of high purity Mg-Y biomaterials. Biomaterials, 2010, 31(3): 398–403

    Google Scholar 

  78. Hort N, Huang Y, Fechner D, et al. Magnesium alloys as implant materials — Principles of property design for Mg-RE alloys. Acta Biomaterialia, 2010, 6(5): 1714–1725

    Google Scholar 

  79. Yang L, Hort N, Laipple D, et al. Element distribution in the corrosion layer and cytotoxicity of alloy Mg-10Dy during in vitro biodegradation. Acta Biomaterialia, 2013, 9(10): 8475–8487

    Google Scholar 

  80. Yang L, Huang Y, Feyerabend F, et al. Microstructure, mechanical and corrosion properties of Mg-Dy-Gd-Zr alloys for medical applications. Acta Biomaterialia, 2013, 9(10): 8499–8508

    Google Scholar 

  81. Yang L, Huang Y, Feyerabend F, et al. Influence of ageing treatment on microstructure, mechanical and bio-corrosion properties of Mg-Dy alloys. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13: 36–44

    Google Scholar 

  82. Yang L, Huang Y, Peng Q, et al. Mechanical and corrosion properties of binary Mg-Dy alloys for medical applications. Materials Science and Engineering B, 2011, 176(20): 1827–1834

    Google Scholar 

  83. Brar H S, Berglund I S, Allen J B, et al. The role of surface oxidation on the degradation behavior of biodegradable Mg-RE (Gd, Y, Sc) alloys for resorbable implants. Materials Science and Engineering C, 2014, 40: 407–417

    Google Scholar 

  84. Liu M, Schmutz P, Uggowitzer P J, et al. The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys. Corrosion Science, 2010, 52(11): 3687–3701

    Google Scholar 

  85. Zhang X, Zhang K, Deng X, et al. Corrosion behavior of Mg-Y alloy in NaCl aqueous solution. Progress in Natural Science: Materials International, 2012, 22(2): 169–174

    Google Scholar 

  86. Datta M K, Chou D T, Hong D, et al. Structure and thermal stability of biodegradable Mg-Zn-Ca based amorphous alloys synthesized by mechanical alloying. Materials Science and Engineering B, 2011, 176(20): 1637–1643

    Google Scholar 

  87. Gu X N, Zheng Y F, Zhong S P, et al. Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses. Biomaterials, 2010, 31(6): 1093–1103

    Google Scholar 

  88. Ma E, Xu J. Biodegradable alloys: The glass window of opportunities. Nature Materials, 2009, 8(11): 855–857

    Google Scholar 

  89. Wessels V, Le Mené G, Fischerauer S F, et al. In vivo performance and structural relaxation of biodegradable bone implants made from Mg-Zn-Ca bulk metallic glasses. Advanced Engineering Materials, 2012, 14(6): B357–B364

    Google Scholar 

  90. Zberg B, Uggowitzer P J, Loffler J F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials, 2009, 8(11): 887–891

    Google Scholar 

  91. Zhao Y Y, Zhao X. Structural relaxation and its influence on the elastic properties and notch toughness of Mg-Zn-Ca bulk metallic glass. Journal of Alloys and Compounds, 2012, 515: 154–160

    Google Scholar 

  92. Zberg B, Arata E R, Uggowitzer P J, et al. Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics. Acta Materialia, 2009, 57(11): 3223–3231

    Google Scholar 

  93. Zarandi F, Yue S. Magnesium sheet, challenges and opportunities. In: Czerwinski F, ed. Magnesium Alloys — Design, Processing and Properties. InTech, 2011

    Google Scholar 

  94. Kang F, Liu J Q, Wang J T, et al. Equal channel angular pressing of a Mg-3Al-1Zn alloy with back pressure. Advanced Engineering Materials, 2010, 12(8): 730–734

    Google Scholar 

  95. Gu X N, Li N, Zheng Y F, et al. In vitro study on equal channel angular pressing AZ31 magnesium alloy with and without back pressure. Materials Science and Engineering B, 2011, 176(20): 1802–1806

    Google Scholar 

  96. Wang H, Estrin Y, Zúberová Z. Bio-corrosion of a magnesium alloy with different processing histories. Materials Letters, 2008, 62(16): 2476–2479

    Google Scholar 

  97. Wang H, Estrin Y, Fu H, et al. The effect of pre-processing and grain structure on the bio-corrosion and fatigue resistance of magnesium alloy AZ31. Advanced Engineering Materials, 2007, 9(11): 967–972

    Google Scholar 

  98. Alvarez-Lopez M, Pereda M D, del Valle J A, et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomaterialia, 2010, 6(5): 1763–1771

    Google Scholar 

  99. Hornberger H, Virtanen S, Boccaccini A R. Biomedical coatings on magnesium alloys — A review. Acta Biomaterialia, 2012, 8(7): 2442–2455

    Google Scholar 

  100. Shadanbaz S, Dias G J. Calcium phosphate coatings on magnesium alloys for biomedical applications: A review. Acta Biomaterialia, 2012, 8(1): 20–30

    Google Scholar 

  101. Surmenev R A, Surmeneva M A, Ivanova A A. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis-A review. Acta Biomaterialia, 2014, 10(2): 557–579

    Google Scholar 

  102. Zhang Y, Zhang G, Wei M. Controlling the biodegradation rate of magnesium using biomimetic apatite coating. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009, 89B(2): 408–414

    Google Scholar 

  103. Yang J X, Cui F Z, Yin Q S, et al. Characterization and degradation study of calcium phosphate coating on magnesium alloy bone implant in vitro. IEEE Transactions on Plasma Sciences, 2009, 37(7): 1161–1168

    Google Scholar 

  104. Gray-Munro J E, Strong M. The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31. Journal of Biomedical Materials Research Part A, 2009, 90A(2): 339–350

    Google Scholar 

  105. Zeng R, Sun X, Song Y, et al. Influence of solution temperature on corrosion resistance of Zn-Ca phosphate conversion coating on biomedical Mg-Li-Ca alloys. Transactions of Nonferrous Metals Society of China, 2013, 23(11): 3293–3299

    Google Scholar 

  106. Wang Q, Tan L, Xu W, et al. Dynamic behaviors of a Ca-P coated AZ31B magnesium alloy during in vitro and in vivo degradations. Materials Science and Engineering B, 2011, 176(20): 1718–1726

    Google Scholar 

  107. Chen X B, Birbilis N, Abbott T B. A simple route towards a hydroxyapatite-Mg(OH)2 conversion coating for magnesium. Corrosion Science, 2011, 53(6): 2263–2268

    Google Scholar 

  108. Zhang C-Y, Zeng R-C, Liu C-L, et al. Comparison of calcium phosphate coatings on Mg-Al and Mg-Ca alloys and their corrosion behavior in Hank’s solution. Surface and Coatings Technology, 2010, 204(21–22): 3636–3640

    Google Scholar 

  109. Zhang C y, Zeng R, Chen R, et al. Preparation of calcium phosphate coatings on Mg-1.0Ca alloy. Transactions of Nonferrous Metals Society of China, 2010, 20(Supplement 2): s655–s659

    Google Scholar 

  110. Song Y W, Shan D Y, Han E H. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Materials Letters, 2008, 62(17–18): 3276–3279

    Google Scholar 

  111. Kannan M B, Orr L. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy. Biomedical Materials, 2011, 6(4): 045003

    Google Scholar 

  112. Song Y, Zhang S, Li J, et al. Electrodeposition of Ca-P coatings on biodegradable Mg alloy: In vitro biomineralization behavior. Acta Biomaterialia, 2010, 6(5): 1736–1742

    Google Scholar 

  113. Wang H X, Guan S K, Wang X, et al. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomaterialia, 2010, 6(5): 1743–1748

    Google Scholar 

  114. Wang H, Guan S, Wang Y, et al. In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg-Zn-Ca alloy for bone implant application. Colloids and Surfaces B: Biointerfaces, 2011, 88(1): 254–259

    Google Scholar 

  115. Yao Z, Li L, Jiang Z. Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation. Applied Surface Science, 2009, 255(13–14): 6724–6728

    Google Scholar 

  116. Srinivasan P B, Liang J, Blawert C, et al. Characterization of calcium containing plasma electrolytic oxidation coatings on AM50 magnesium alloy. Applied Surface Science, 2010, 256(12): 4017–4022

    Google Scholar 

  117. Li J N, Cao P, Zhang X N, et al. In vitro degradation and cell attachment of a PLGA coated biodegradable Mg-6Zn based alloy. Journal of Materials Science, 2010, 45(22): 6038–6045

    Google Scholar 

  118. Gu X N, Zheng Y F, Lan Q X, et al. Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan. Biomedical Materials, 2009, 4(4): 044109

    Google Scholar 

  119. Xu L, Yamamoto A. Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating. Colloids and Surfaces B: Biointerfaces, 2012, 93: 67–74

    Google Scholar 

  120. Xu L, Yamamoto A. In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition. Applied Surface Science, 2012, 258(17): 6353–6358

    Google Scholar 

  121. Wong H M, Yeung K W K, Lam K O, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials, 2010, 31(8): 2084–2096

    Google Scholar 

  122. Windhagen H, Radtke K, Weizbauer A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomedical Engineering Online, 2013, 12(1): 62 (10 pages)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Nan Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, XN., Li, SS., Li, XM. et al. Magnesium based degradable biomaterials: A review. Front. Mater. Sci. 8, 200–218 (2014). https://doi.org/10.1007/s11706-014-0253-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-014-0253-9

Keywords

Navigation