Skip to main content
Log in

Predictive calculations of gas solubility and permeability in glassy polymeric membranes: An overview

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The possibility to evaluate in a predictive way the relevant transport properties of low molecular weight species, both gases and vapors, in glassy polymeric membranes is inspected in detail, with particular attention to the methods recently developed based on solid thermodynamic basis. The solubility of pure and mixed gases, diffusivity and permeability of single gases in polymer glasses are examined, considering in particular poly(2,6-dimethyl-1,4-phenylene oxide) as a relevant test case. The procedure clearly indicates what are the relevant physical properties of the polymer matrix and of the penetrants required by the calculations, which can be obtained experimentally through independent measurements. For gas and vapor solubility, the comparison with direct experimental data for mixed gases points out also the ability to account for the significant variations that solubility-selectivity experiences upon variations of pressure and/or feed composition. For gas and vapor permeability, the comparison with direct experimental data shows the possibility to account for the various different trends observed experimentally as penetrant pressure is increased, including the so-called plasticization behavior. The procedure followed for permeability calculations leads also to clear correlations between permeability and physical properties of both polymer and penetrant, based on which pure predictive calculations are reliably made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. George S C, Thomas S. Transport phenomena through polymeric systems. Progress in Polymer Science, 2001, 26(6): 985–1017

    Article  CAS  Google Scholar 

  2. Klopffer M H, Flaconnèche B. Transport Properties of Gases in Polymers: Bibliographic Review. Oil & Gas Science and Technology, 2001, 56(3): 223–244

    Article  CAS  Google Scholar 

  3. Brown W R, Park G S. Diffusion of solvents and swellers in polymers. Journal of Paint Technology, 1970, 42: 16–25

    CAS  Google Scholar 

  4. Lange J, Wyser Y. Recent innovations in barrier technologies for plastic packaging — A review. Packaging Technology & Science, 2003, 16(4): 149–158

    Article  CAS  Google Scholar 

  5. Grate J W, Abraham M H. Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays. Sensors and Actuators. B, Chemical, 1991, 3(2): 85–111

    Article  CAS  Google Scholar 

  6. Bessarabov D, Kozak P. Measurement of gas permeability in SPE membranes for use in fuel cells, Membrane Technology, 2007, 2007: 6–9

  7. Uhrich K E, Cannizzaro S M, Langer R S, Shakesheff K M. Polymeric Systems for Controlled Drug Release. Chemical Reviews, 1999, 99(11): 3181–3198

    Article  CAS  Google Scholar 

  8. Robinson J R. Sustained and controlled release drug delivery system. New York: Dekker, 1978

    Google Scholar 

  9. Nalawade S P, Picchioni F, Janssen L P B M. Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. Progress in Polymer Science, 2006, 31(1): 19–43

    Article  CAS  Google Scholar 

  10. Areerat S, Funami E, Hayata Y, Nakagawa D, Ohshima M. Ohshima M. Measurement and Prediction of Diffusion Coefficients of Supercritical CO2 in Molten Polymers. Polymer Engineering and Science, 2004, 44(10): 1915–1924

    Article  CAS  Google Scholar 

  11. Baker R D. Membrane Technology and Applications. 3rd Ed. Chichester: John Wiley & Sons, 2012

    Book  Google Scholar 

  12. Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of the art. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638–4663

    Article  CAS  Google Scholar 

  13. Matteucci S. Yampolskii Y, Freeman B D, Pinnau I. Chapter 1. Transport of gases and vapors in glassy and rubbery polymers. In: Yampolskii Y P, Pinnau I, Freeman B D, eds. Materials Science of Membranes for Gas and Vapor Separation. New York: JohnWiley & Sons, 2006, 1–47

    Google Scholar 

  14. Lacombe R H, Sanchez I. Statistical thermodynamics of fluid mixtures. Journal of Physical Chemistry, 1976, 80(23): 2568–2580

    Article  CAS  Google Scholar 

  15. Chapman W G, Gubbins K E, Jackson G, Radosz M. SAFT: Equation-of-state solution model for associating fluids. Fluid Phase Equilibria, 1989, 52: 31–38

    Article  CAS  Google Scholar 

  16. Song Y, Lambert S M, Prausnitz J M. Equation of state for mixtures of hard-sphere chains including copolymers. Macromolecules, 1994, 27(2): 441–448

    Article  CAS  Google Scholar 

  17. Gross J, Sadowski G, Perturbed-chain S A F T. An equation of state based on a perturbation theory for chain molecules. Industrial & Engineering Chemistry Research, 2001, 40(4): 1244–1260

    Article  CAS  Google Scholar 

  18. Weiss G H, Bendler J T, Shlesinger M F. Continuous-site model for Langmuir gas sorption in glassy polymers. Macromolecules, 1992, 25(2): 990–992

    Article  CAS  Google Scholar 

  19. Mi Y, Zhou S, Stern S A. Representation of gas solubility in glassy polymers by a concentration–temperature superposition principle. Macromolecules, 1991, 24(9): 2361–2367

    Article  CAS  Google Scholar 

  20. Raucher D, Sefcik M D. Sorption and transport in glassy polymers. Gas–polymer-matrix model. In: Whyte T E, Yon C M, Wagener E H, eds. Industrial Gas Separations, ACS Symposium Series 223. Washington American Chemical Society, 1983, 111–124

    Chapter  Google Scholar 

  21. Kirchheim R. Sorption and partial molar volume of small molecules in glassy polymers. Macromolecules, 1992, 25(25): 6952–6960

    Article  CAS  Google Scholar 

  22. Lipscomb G G, Banerjee T, Chhajer M. Sorption and permeation in elastic solids: Applicability to gas transport in glassy polymeric materials. Polymers for Advanced Technologies, 1994, 5(11): 708–723

    Article  CAS  Google Scholar 

  23. Vrentas J S, Vrentas C M. Sorption in glassy polymers. Macromolecules, 1991, 24(9): 2404–2412

    Article  CAS  Google Scholar 

  24. Michaels A S, Vieth W R, Barrie J A. Solution of Gases in Polyethylene Terephthalate. Journal of Applied Physics, 1963, 34(1): 1–13

    Article  CAS  Google Scholar 

  25. Vieth W R, Sladek K J. A model for diffusion in a glassy polymer. Journal of Colloid Science, 1965, 20(9): 1014–1033

    Article  CAS  Google Scholar 

  26. Doghieri F, Sarti G C. Solubility, diffusivity and mobility of npentane and ethanol in poly(1-trimethylsilyl-1-propyne). Journal of Polymer Science. Part B, Polymer Physics, 1997, 35(14): 2245–2258

    Article  CAS  Google Scholar 

  27. Galizia M, De Angelis MG, Finkelshtein E, Yampolskii Y P, Sarti G C. Sorption and transport of hydrocarbons and alcohols in additiontype poly(trimethyl silyl norbornene). I: Experimental data. Journal of Membrane Science, 2011, 385–386: 141–153

    Google Scholar 

  28. Chiou J S, Paul D R. Sorption and transport of CO2 in PVF2/PMMA blends. Journal of Applied Polymer Science, 1986, 32(1): 2897–2918

    Article  CAS  Google Scholar 

  29. Chiou J S, Paul D R. Gas sorption and permeation in poly(ethyl methacrylate). Journal of Membrane Science, 1989, 45(1–2): 167–189

    Article  CAS  Google Scholar 

  30. Bondar V I, Kamiya Y, Yampolskii Y P. On pressure dependence of the parameters of the dual-mode sorption model. Journal of Polymer Science. Part B, Polymer Physics, 1996, 34(2): 369–378

    Article  CAS  Google Scholar 

  31. Lee W M. Selection of barrier materials from molecular structure. Polymer Engineering and Science, 1980, 20(1): 65–69

    Article  CAS  Google Scholar 

  32. Salame M. Prediction of gas barrier properties of high polymers. Polymer Engineering and Science, 1986, 26(22): 1543–1546

    Article  CAS  Google Scholar 

  33. Jia L, Xu J. A simple method for prediction of gas permeability of polymers from their molecular structure. Polymer Journal, 1991, 23(5): 417–425

    Article  CAS  Google Scholar 

  34. Park J Y, Paul D R. Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method. Journal of Membrane Science, 1997, 125(1): 23–39

    Article  CAS  Google Scholar 

  35. Robeson L M, Smith C D, Langsam M. A group contribution approach to predict permeability and permselectivity of aromatic polymers. Journal of Membrane Science, 1997, 132(1): 33–54

    Article  CAS  Google Scholar 

  36. Malykh O V, Golub A Y, Teplyakov V V. Polymeric membrane materials: New aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases. Advances in Colloid and Interface Science, 2011, 164(1–2): 89–99

    Article  CAS  Google Scholar 

  37. Ryzhikh V, Tsarev D, Alentiev A, Yampolskii Y. A novel method for predictions of the gas permeation parameters of polymers on the basis of their chemical structure. Journal of Membrane Science, 2015, 487: 189–198

    Article  CAS  Google Scholar 

  38. Velioglu S, Tantekin-Ersolmaz S B. Prediction of gas permeability coefficients of copolyimides by group contribution methods. Journal of Membrane Science, 2015, 480: 47–63

    Article  CAS  Google Scholar 

  39. Doghieri F, Sarti G C. Nonequilibrium lattice fluids: A predictive model for the solubility in glassy polymers. Macromolecules, 1996, 29(24): 7885–7896

    Article  CAS  Google Scholar 

  40. de Angelis M G, Sarti G C. Solubility of Gases and Liquids in Glassy Polymers. Annual Review of Chemical and Biomolecular Engineering, 2011, 2(1): 97–120

    Article  Google Scholar 

  41. Doghieri F, Sarti G C. Predicting the low pressure solubility of gases and vapors in glassy polymers by the NELF model. Journal of Membrane Science, 1998, 147(1): 73–86

    Article  CAS  Google Scholar 

  42. Baschetti MG, Doghieri F, Sarti G C. Solubility in glassy polymers: Correlations through the Nonequilibrium Lattice Fluid Model. Industrial & Engineering Chemistry Research, 2001, 40(14): 3027–3037

    Article  Google Scholar 

  43. Doghieri F, Quinzi M, Rethwisch D G, Sarti G C. Predicting gas solubility in glassy polymers through non-equilibrium EOS. In: Pinnau I, Freeman B D, eds. Advanced Materials for Membrane Separations, 876, ACS Symposium Series. Washington: American Chemical Society, 2004, 74–90

    Chapter  Google Scholar 

  44. Doghieri F, De Angelis MG, Baschetti MG, Sarti G C. Solubility of gases and vapors in glassy polymers modelled through nonequilibrium PHSC theory. Fluid Phase Equilibria, 2006, 241(1–2): 300–307

    Article  CAS  Google Scholar 

  45. Grassia F, Baschetti M G, Doghieri F, Sarti G C. Solubility of Gases and Vapors in Glassy Polymer Blends. In: Advanced Materials for Membrane Separations, Freeman B D, Pinnau I, eds. ACS Symposium Series. Washington: American Chemical Society, 2004, 55–73

    Chapter  Google Scholar 

  46. Baschetti MG, De Angelis MG, Doghieri F, Sarti G C. In Chemical Engineering: Trends and Developments. Galan M A, Martin del Valle E, eds. Chichester: John Wiley, 2005, 41–61

  47. Ferrari M C, Galizia M, de Angelis M G, Sarti G C. Gas and vapor transport in mixed matrix membranes based on amorphous Teflon AF1600 and AF2400 and fumed silica. Industrial & Engineering Chemistry Research, 2010, 49(23): 11920–11935

    Article  CAS  Google Scholar 

  48. Minelli M, Sarti G C. Permeability and diffusivity of CO2 in glassy polymers with and without plasticization. Journal of Membrane Science, 2013, 435: 176–185

    Article  CAS  Google Scholar 

  49. Bearman R J, Kirkwood J G. Statistical mechanics of transport processes. XI. Equations of transport in multicomponent systems. Journal of Chemical Physics, 1958, 28(1): 136–145

    CAS  Google Scholar 

  50. Minelli M, Sarti G C. Thermodynamic model for the permeability of light gases in glassy polymers. AIChE Journal. American Institute of Chemical Engineers, 2015, 61(9): 2776–2788

    Article  CAS  Google Scholar 

  51. Minelli M, Sarti G C. Thermodynamic basis for vapor permeability in Ethyl Cellulose. Journal of Membrane Science, 2015, 473: 137–145

    Article  CAS  Google Scholar 

  52. Minelli M. Modeling CO2 solubility and transport in poly(ethylene terephthalate) above and below the glass transition. Journal of Membrane Science, 2014, 451: 305–311

    Article  CAS  Google Scholar 

  53. Minelli M, Sarti G C. Permeability and solubility of carbon dioxide in different glassy polymer systems with and without plasticization. Journal of Membrane Science, 2013, 444: 429–439

    Article  CAS  Google Scholar 

  54. Minelli M, Sarti G C. Gas permeability in glassy polymers: A thermodynamic approach. Fluid Phase Equilibria, 2016, 424: 44–51

    Article  CAS  Google Scholar 

  55. Sanders D F, Smith Z P, Guo R, Robeson L M, McGrath J E, Paul D R, Freeman B D. Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer, 2013, 54(18): 4729–4761

    Article  CAS  Google Scholar 

  56. Berghmans S, Mewis J, Berghmans H, Meijer H. Phase behavior and structure formation in solutions of poly(2,6-dimethyl-,4-phenylene ether). Polymer, 1995, 36(16): 3085–3091

    Article  CAS  Google Scholar 

  57. Alentiev A, Drioli E, Gokzhaev M, Golemme G, Ilinich O, Lapkin A, Volkov V, Yampolskii Y. Gas permeation properties of phenylene oxide polymers. Journal of Membrane Science, 1998, 138(1): 99–107

    Article  CAS  Google Scholar 

  58. Sarti G C, Doghieri F. Predictions of the solubility of gases in glassy polymers based on the NELF model. Chemical Engineering Science, 1998, 53(19): 3435–3447

    Article  CAS  Google Scholar 

  59. Galizia M, de Angelis M G, Sarti G C. Sorption of hydrocarbons and alcohols in addition-type poly(trimethyl silyl norbornene) and other high free volume glassy polymers. II: NELF model predictions. Journal of Membrane Science, 2012, 405–406: 201–211

    Google Scholar 

  60. Sarti G C, de Angelis M G. Calculation of the solubility of liquid solutes in glassy polymers. AIChE Journal, 2012, 58(1): 292–301

    Article  CAS  Google Scholar 

  61. Minelli M, Cocchi G, Ansaloni L, Baschetti M G, de Angelis M G, Doghieri F. Vapor and liquid sorption in Matrimid polyimide: Experimental characterization and modeling. Industrial & Engineering Chemistry Research, 2013, 52(26): 8936–8945

    Article  CAS  Google Scholar 

  62. Minelli M, Friess K, Vopicka O, De Angelis MG. Modeling gas and vapor sorption in a polymer of intrinsic microporosity (PIM-1). Fluid Phase Equilibria, 2013, 347: 35–44

    Article  CAS  Google Scholar 

  63. Rodgers P A. Pressure-volume-temperature relationships for polymeric liquids: A review of equations of state and their characteristic parameters for 56 polymers. Journal of Applied Polymer Science, 1993, 48(6): 1061–1080

    Article  CAS  Google Scholar 

  64. de Angelis M G, Merkel T C, Bondar V I, Freeman B D, Doghieri F, Sarti G C. Gas sorption and dilation in poly(2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole-co-tetrafluoroethylene): Comparison of experimental data with predictions of the non-equilibrium lattice fluid model. Macromolecules, 2002, 35(4): 1276–1288

    Article  Google Scholar 

  65. de Angelis M G, Sarti G C, Doghieri F. NELF model prediction of the infinite dilution gas solubility in glassy polymers. Journal of Membrane Science, 2007, 289(1–2): 106–122

    Article  Google Scholar 

  66. Minelli M, Doghieri F. A predictive model for vapor solubility and volume dilation in glassy polymers. Industrial & Engineering Chemistry Research, 2012, 51(50): 16505–16516

    Article  CAS  Google Scholar 

  67. Minelli M, Doghieri F. Predictive model for gas and vapor solubility and swelling in glassy polymers I: Application to different polymer/penetrant systems. Fluid Phase Equilibria, 2014, 381: 1–11

    Article  CAS  Google Scholar 

  68. Minelli M, Campagnoli S, de Angelis M G, Doghieri F, Sarti G C. Predictive model for the solubility of fluid mixtures in glassy polymers. Macromolecules, 2011, 44(12): 4852–4862

    Article  CAS  Google Scholar 

  69. Vrentas J S, Vrentas C M. Solvent self-diffusion in glassy polymersolvent systems. Macromolecules, 1994, 27(20): 5570–5576

    Article  CAS  Google Scholar 

  70. Zolandz R R, Fleming G K. II Gas permeation. In: Membrane handbook, vol. 31. New York: Van Nostrand Reinhold, 1992, pp. 25–53

  71. Story B J, Koros W J. Sorption of CO2/CH4 Mixtures in Poly (phenylene Oxide) and a Carboxylated Derivative. Journal of Applied Polymer Science, 1991, 42(9): 2613–2626

    Article  CAS  Google Scholar 

  72. Toi K, Morel G, Paul D R. Gas sorption and transport in poly (phenylene oxide) and comparisons with other glassy polymers. Journal of Applied Polymer Science, 1982, 27(8): 2997–3005

    Article  CAS  Google Scholar 

  73. Hu C C, Fu Y J, Lee K R, Ruaan R C, Lai J Y. Effect of sorption behavior on transport properties of gases in polymeric membranes. Polymer, 2009, 50(22): 5308–5313

    Article  CAS  Google Scholar 

  74. Minelli M, de Angelis M G, Baschetti M G, Doghieri F, Sarti G C, Ribeiro Jr C P, Freeman B D. Equation of State Modeling of the Solubility of CO2/C2H6 Mixtures in Cross-Linked Poly(ethylene oxide). Industrial & Engineering Chemistry Research, 2015, 54(3): 1142–1152

    Article  CAS  Google Scholar 

  75. Ghosal K, Chern R T. Aryl-nitration of poly (phenylene oxide) and polysulfone. Structural characterization and gas permeability. Journal of Membrane Science, 1992, 72(1): 91–97

    CAS  Google Scholar 

  76. Bos A, Pünt I G M, Wessling M, Strathmann H. CO2-induced plasticization phenomena in glassy polymers. Journal of Membrane Science, 1999, 155(1): 67–78

    Article  CAS  Google Scholar 

  77. Ismail A F, Lorna W. Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane. Separation and Purification Technology, 2002, 27(3): 173–194

    Article  CAS  Google Scholar 

  78. Jue ML, McKay C S, McCool B A, FinnMG, Lively R P. Effect of Nonsolvent Treatments on the Microstructure of PIM-1. Macromolecules, 2015, 48(16): 5780–5790

    Article  CAS  Google Scholar 

  79. Chern R T, Jia L, Shimoda S, Hopfenber H B. A note on the effects of mono-and di-bromination on the transport properties of poly(2,6 dimethylphenylene oxide). Journal of Membrane Science, 1990, 48 (2-3): 333–341

    Article  CAS  Google Scholar 

  80. Hachisuka H, Sato T, Imai T, Tsujita Y, Takizawa A, Kinoschita T. Glass transition temperature of glassy polymers plasticized by CO2 gas. Polymer Journal, 1990, 22(1): 77–79

    Article  CAS  Google Scholar 

  81. Minelli M, Sarti G C. Elementary prediction of gas permeability in glassy polymers. Journal of Membrane Science, 2017, 521: 73–83

    Article  CAS  Google Scholar 

  82. Freeman B D, Pinnau I. Polymeric materials for gas separations. In: Freeman B D, Pinnau I, eds. Polymer Membranes for Gas and Vapor Separations, ACS Symposium Series 733. Washington: American Chemical Society, 1999, 1–27

    Chapter  Google Scholar 

  83. Bondi A. Physical Properties of Molecular Crystals, Liquids and Glasses. New York: Wiley, 1968

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio C. Sarti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minelli, M., De Angelis, M.G. & Sarti, G.C. Predictive calculations of gas solubility and permeability in glassy polymeric membranes: An overview. Front. Chem. Sci. Eng. 11, 405–413 (2017). https://doi.org/10.1007/s11705-017-1615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1615-5

Keywords

Navigation