Skip to main content
Log in

Functional characterization of a thermostable methionine adenosyltransferase from Thermus thermophilus HB27

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

MATTt (a thermostable methionine adenosyltransferase from Thermus thermophilus HB27) was overexpressed in Escherchia coli and purified using Ni-NTA affinity column. The enzymatic activity of MATTt was investigated in a temperature range from 30 °C to 90 °C, showing that MATTt exhibited a high enzymatic activity and good thermostability at 80 °C. Circular dichroism spectra reveals that MATTt contains high portion of β-sheet structures contributing to the thermostability of MATTt. The kinetic parameter, K m is 4.19 mmol/L and 1.2 mmol/L for ATP and methionine, respectively. MATTt exhibits the highest enzymatic activity at pH 8. Cobalt (Co2+) and zinc ion (Zn2+) enhances remarkably the activity of MATTt compared to the magnesium ion (Mg2+). All these results indicated that the thermostable MATTt has great potential for industry applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Catoni G L. S-Adenosylmethionine: A new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. Journal of Biological Chemistry, 1953, 204: 403–416

    CAS  Google Scholar 

  2. Fontecave M, Atta M, Mulliez E. S-adenosylmethionine: Nothing goes to waste. Trends in Biochemical Sciences, 2004, 29(5): 243–249

    Article  CAS  Google Scholar 

  3. Momparler R L, Bovenzi V. DNA methylation and cancer. Journal of Cellular Physiology, 2000, 183: 145–154

    Article  CAS  Google Scholar 

  4. Dording C M, Mischoulon D, Shyu I. SAMe and sexual functioning. European Psychiatry, 2012, 27(6): 451–454

    Article  CAS  Google Scholar 

  5. Friedel H A, Goa K L, Benfield P. S-adenosyl-L-methionine: A review of its pharmacological properties and therapeutic potential in liver dysfunction and affective disorders in relation to its physiological role in cell metabolism. Drugs, 1989, 38: 389–416

    Article  CAS  Google Scholar 

  6. Lieber C S. S-adenosyl-L-methionine: Its role in the treatment of liver disorders. American Journal of Clinical Nutrition, 2002, 76: 1183S–1187S

    CAS  Google Scholar 

  7. Lu Z J, Markham G D. Enzymatic properties of S-adenosylmethionine synthetase from the archaeon Methanococcus jannaschii. Journal of Biological Chemistry, 2002, 277: 16624–16631

    Article  CAS  Google Scholar 

  8. Komoto J, Yamada T, Takata Y. Crystal structure of the Sadenosylmethionine synthetase ternary complex: A novel catalytic mechanism of S-adenosylmethionine synthesis from ATP and Met. Biochemistry, 2004, 4: 1821–1831

    Article  Google Scholar 

  9. Porcelli M, Caccilapuoti G, Carteni-farina M, Gambacorta A. Sdenosylmethionine synthetase in the thermophilic archaebacterium Sulfolobus solfataricus. Purification and characterization of two isoforms. European Journal of Biochemistry, 1988, 177: 273–280

    Article  CAS  Google Scholar 

  10. Garrido F, Estrela S, Alves S. Refolding and characterization of methionine adenosyltransferase from Euglena gracilis. Protein Expression and Purification, 2011, 79: 128–136

    Article  CAS  Google Scholar 

  11. Markham G D, Deparsis J, Gatmaitan J. The sequence of metK, the structural gene for S-adenosylmethionine synthetase in Escherichia coli. Journal of Biological Chemistry, 1984, 259: 14505–14507

    CAS  Google Scholar 

  12. Yoon G S, Ko K H, Kang H W. Characterization of Sadenosylmethionine synthetase from Streptomyces avermitilis NRRL8165 and its effect on antibiotic production. Enzyme and Microbial Technology, 2006, 39(3): 466–473

    Article  CAS  Google Scholar 

  13. Slapeta J, Stejskal F, Keithly J S. Characterization of sadenosylmethionine synthetase in Cryptosporidium parvum (apicomplexa). FEMS Microbiology Letters, 2003, 225(2): 271–277

    Article  CAS  Google Scholar 

  14. Kamarthapu V, Rao K V, Srinivas P N B S, Reddy G B, Reddy V D. Structural and kinetic properties of Bacillus subtilis s-adenosylmethionine synthetase expressed in Escherichia coli. Biochimica et Biophysica Acta, 2008, 1784(12): 1949–1958

    Article  CAS  Google Scholar 

  15. Burk M J, Van Dien S. Biotechnology for chemical production: Challenges and opportunities. Trends in Biotechnology, 2015, 34 (3): 187–190

    Article  Google Scholar 

  16. Oshima T, Imahori K. Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa. International Journal of Systematic Bacteriology, 1974, 24: 102–112

    Article  CAS  Google Scholar 

  17. Liu Y H, Song J N, Tan T W, Liu L. Production of fumaric acid from l-malic acid by solvent engineering using a recombinant thermostable fumarase from Thermus thermophilus HB8. Applied Biochemistry and Biotechnology, 2015, 175(6): 2823–2831

    Article  CAS  Google Scholar 

  18. Henne A, Brüggemann H, Raasch C. The genome sequence of the extreme thermophile Thermus thermophilus. Nature Biotechnology, 2004, 22: 547–553

    Article  CAS  Google Scholar 

  19. Chang Y L, Hsieh C L, Huang Y M. Modified method for determination of sulfur metabolites in plant tissues by stable isotope dilution-based liquid chromatography-electrospray ionization-tandem mass spectrometry. Analytical Biochemistry, 2013, 442: 24–33

    Article  CAS  Google Scholar 

  20. Carolina P, Miguel A A. K2D2: Estimation of protein secondary structure from circular dichroism spectra. BMC Structural Biology, 2008, 8: 25

    Article  Google Scholar 

  21. Whitmore L, Wallace B A. Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers, 2008, 89: 392–400

    Article  CAS  Google Scholar 

  22. Thompson J D, Gibson T J, Plewniak F. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25: 4876–4882

    Article  CAS  Google Scholar 

  23. Page R D. TreeView: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences: CABIOS, 1996, 12(4): 357–358

    CAS  Google Scholar 

  24. Deckert G, Warren P V, Gaasterland T. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature, 1998, 392: 353–358

    Article  CAS  Google Scholar 

  25. Graham D E, Bock C L, Schalk-Hihi C, Lu Z J, Markham G D. Identification of a highly diverged class of S-adenosylmethionine synthetases in the archaea. Journal of Biological Chemistry, 2000, 275: 4055–4059

    Article  CAS  Google Scholar 

  26. Markham G D, Hafner E W, Tabor C W. S-Adenosylmethionine synthetase from Escherichia coli. Journal of Biological Chemistry, 1980, 255: 9082–9092

    CAS  Google Scholar 

  27. Kotb M, Kredich N M. S-Adenosylmethionine synthetase from human lymphocytes. Purification and characterization. Journal of Biological Chemistry, 1985, 260: 3923–3930

    CAS  Google Scholar 

  28. Takusagawa F, Kamitori S, Misaki S. Crystal structure of Sadenosylmethionine synthetase. Journal of Biological Chemistry, 1996, 271: 136–147

    Article  CAS  Google Scholar 

  29. Luo Y, Yuan Z, Luo G. Expression of secreted His-tagged Sadenosylmethionine synthetase in the methylotrophic yeast Pichia pastoris and its characterization, one-step purification, and immobilization. Biotechnology Progress, 2008, 24: 214–220

    Article  CAS  Google Scholar 

  30. Markham G D, Pajares M A. Structure-function relationships in methionine adenosyltransferases. Cellular and Molecular Life Sciences, 2009, 66: 636–648

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luo Liu or Tianwei Tan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, B., Wang, Z. et al. Functional characterization of a thermostable methionine adenosyltransferase from Thermus thermophilus HB27. Front. Chem. Sci. Eng. 10, 238–244 (2016). https://doi.org/10.1007/s11705-016-1566-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-016-1566-2

Keywords

Navigation