Skip to main content
Log in

DNA alkylation promoted by an electron-rich quinone methide intermediate

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Biological application of conjugates derived from oligonucleotides and quinone methides have previously been limited by the slow exchange of their covalent self-adducts and subsequent alkylation of target nucleic acids. To enhance the rates of these processes, a new quinone methide precursor with an electron donating substituent has been prepared. Additionally, this substituent has been placed para to the nascent exo-methylene group of the quinone methide for maximum effect. A conjugate made from this precursor and a 5'-aminohexyloligonucleotide accelerates formation of its reversible self-adduct and alkylation of its complementary DNA as predicted from prior model studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rokita S E, ed. Quinone Methides. Hoboken: John Wiley & Sons, Inc., 2009, 1–431

    Book  Google Scholar 

  2. Shabat D, Shamis M. Single-triggered AB6 self-immolative dendritic amplifiers. Chemistry (Weinheim an der Bergstrasse, Germany), 2007, 13: 4523–4528

    Google Scholar 

  3. Rosenau T, Kloser E, Gille L, Mazzini F, Netscher T. Vitamin E chemistry. Studies into initial oxidation intermediates of a-tocopherol: Disproving the involvement of 5a-C-centered “chromanol methide” radicals. Journal of Organic Chemistry, 2007, 72: 3268–3281

    Article  CAS  Google Scholar 

  4. Colloredo-Mels S, Dorr R T, Verga D, Freccero M. Photogenerated quinone methides as useful intermediates in the synthesis of chiral BINOL ligands. Journal of Organic Chemistry, 2006, 71: 3889–3895

    Article  CAS  Google Scholar 

  5. Arumugam P, Popik V V. Attach, remove, or replace: Reversible surface functionalization using thiol-quinone methide photoclick chemistry. Journal of the American Chemical Society, 2012, 134: 8408–8411

    Article  CAS  Google Scholar 

  6. Hulsman N, Medema J P, Bos C, Jongejan A, Luers R, Smit M J, de Esch I J P, Richel D, Witjmans M. Chemical insights in the concept of hybrid drugs: The antitumor effect of nitric oxide-donating aspirin involves a quinone methide but not nitric oxide nor aspirin. Journal of Medicinal Chemistry, 2007, 50: 2424–2431

    Article  CAS  Google Scholar 

  7. Kashfi K, Rigas B. The mechanism of action of nitric oxidedonating aspirin. Biochemical and Biophysical Research Communications, 2007, 358: 1096–1101

    Article  CAS  Google Scholar 

  8. Dunlap T, Chandrasena R E P, Wang Z, Sinha V, Wang Z, Thatcher G R J. Quinone formation as a chemoprevention strategy for hybrid drugs: Balancing cytotoxity and cytoprotection. Chemical Research in Toxicology, 2007, 20: 1903–1912

    Article  CAS  Google Scholar 

  9. Lewis M A, Yoerg D G, Bolton J L, Thompson J. Alkylation of 2'-deoxynucleosides and DNA by quinone methides derived from 2,6-di-tert-butyl-4-methylphenol. Chemical Research in Toxicology, 1996, 9: 1368–1374

    Article  CAS  Google Scholar 

  10. Weinert E E, Frankenfield K N, Rokita S E. Time-dependent evolution of adducts formed between deoxynucleosides and a model quinone methide. Chemical Research in Toxicology, 2005, 18: 1364–1370

    Article  CAS  Google Scholar 

  11. McCrane M P, Hutchinson M, Ad O, Rokita S E. Oxidative quenching of quinone methide adducts reveals transient products of reversible alkylation in duplex DNA. Chemical Research in Toxicology, 2014, 27: 1282–1293

    Article  CAS  Google Scholar 

  12. Lönnberg T, Hutchinson M, Rokita S E. Selective alkylation of Crich bulge motifs in nucleic acids by quinone methide derivatives. Chemistry, 2015, 21: 13127–13186

    Article  Google Scholar 

  13. Modica E, Zanaletti R, Freccero M, Mella M. Alkylation of amino acids and glutathione in water by ortho-quinone methides. Reactivity and selectivity. Journal of Organic Chemistry, 2001, 66: 41–52

    Article  CAS  Google Scholar 

  14. Zhou Q, Zuniga M A. Quinone methide formations in the Cu2+-induced oxidation of a diterpenone cataechol and concurrent damage on DNA. Chemical Research in Toxicology, 2005, 18: 382–388

    Article  CAS  Google Scholar 

  15. Wang P, Liu R, Wu X, Ma H, Cao X, Zhou P, Zhang J, Weng X, Zhang X L, Zhou X, Weng L A. Potent, water-soluble and photoinducible DNA cross-linking agent. Journal of the American Chemical Society, 2003, 125: 1116–1117

    Article  CAS  Google Scholar 

  16. Percivalle C, La Rosa A, Verga D, Doria F, Mella M, Palumbo M, Di Antonio M, Freccero M. Quinone methide generation via photoinduced electron transfer. Journal of Organic Chemistry, 2011, 76: 3096–3106

    Article  CAS  Google Scholar 

  17. Myers J K, Widlanski T S. Mechanism-based inactivation of prostatic acid phosphatase. Science, 1993, 262: 1451–1453

    Article  CAS  Google Scholar 

  18. Kwan D H, Chen H M, Ratananikom K, Hancock S M, Watanabe Y, Kongsaeree P T, Samuels A L, Withers S G. Self-immobilizing fluorogenic imaging agents of enzyme activity. Angewandte Chemie International Edition, 2011, 50: 300–303

    Article  CAS  Google Scholar 

  19. Cao S, Wang Y, Peng X. ROS-inducible DNA cross-linking agent as a new anticancer prodrug building block. Chemistry, 2012, 18: 3850–3854

    Article  CAS  Google Scholar 

  20. Dufrasne F, Gelbcke M, Néve J, Kiss R, Kraus J L. Quinone methides and their prodrugs: A subtle equilibrium between cancer promotion, prevention and cure. Current Medicinal Chemistry, 2011, 18: 3995–4011

    Article  CAS  Google Scholar 

  21. Toteva M M, Richard J P. The generation and reactions of quinone methides. Advances in Physical Organic Chemistry, 2011, 45: 39–91

    CAS  Google Scholar 

  22. Cao S, Peng X. Exploiting endogenous cellular process to generate quinone methides in vivo. Current Organic Chemistry, 2014, 18: 70–85

    Article  CAS  Google Scholar 

  23. Bolton J L. Quinone methide bioactivation pathway: Contribution to toxicity and/or cytoprotection. Current Organic Chemistry, 2014, 18: 61–69

    Article  CAS  Google Scholar 

  24. Percivalle C, Doria F, Freccerro M. Quinone methides as DNA alkylating agents: An overview on efficient activation protocols for enhanced target selectivity. Current Organic Chemistry, 2014, 18: 19–43

    Article  CAS  Google Scholar 

  25. Weinert E E, Dondi R, Colloredo-Mels S, Frankenfield K N, Mitchell C H, Freccero M, Rokita S E. Substituents on quinone methides strongly modulate formation and stability of their nucleophilic adducts. Journal of the American Chemical Society, 2006, 128: 11940–11947

    Article  CAS  Google Scholar 

  26. Cao S, Christiansen R, Peng X. Substituent effects on oxidationinduced formation of quinone methides from arylboronic ester precursors. Chemistry, 2013, 19: 9050–9058

    Article  CAS  Google Scholar 

  27. Veldhuyzen W F, Pande P, Rokita S E. A transient product of DNA alkylation can be stabilized by binding localization. Journal of the American Chemical Society, 2003, 125: 14005–14013

    Article  CAS  Google Scholar 

  28. Kumar D, Veldhuyzen W F, Zhou Q, Rokita S E. Conjugation of a hairpin pyrrole-imidazole polyamide to a quinone methide for control of DNA cross-linking. Bioconjugate Chemistry, 2004, 15: 915–922

    Article  CAS  Google Scholar 

  29. Li T, Rokita S E. Selective modification of DNA controlled by an ionic signal. Journal of the American Chemical Society, 1991, 113: 7771–7773

    Article  CAS  Google Scholar 

  30. Liu Y, Rokita S E. Inducible alkylation of DNA by a quinone methide-peptide nucleic acid conjugate. Biochemistry, 2012, 51: 1020–1027

    Article  CAS  Google Scholar 

  31. Zhou Q, Rokita S E. A general strategy for target-promoted alkylation in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 15452–15457

    Article  CAS  Google Scholar 

  32. Wang H. Quinone methides and their biopolymer conjugates as reversible DNA alkylating agents. Current Organic Chemistry, 2014, 18: 44–60

    Article  Google Scholar 

  33. Rossiter C S, Kumar D, Modica E, Rokita S E. Few constraints limit the design of quinone methide-oligonucleotide self-adducts for directing DNA alkylation. Chemical Communications, 2011, 46: 1476–1478

    Article  Google Scholar 

  34. Zhou Q, Pande P, Johnson A E, Rokita S E. Sequence-specific delivery of a quinone methide intermediate to the major groove of DNA. Bioorganic & Medicinal Chemistry, 2001, 9: 2347–2354

    Article  CAS  Google Scholar 

  35. Fakhari F, Rokita S E. A walk along DNA using bipedal migration of a dynamic and covalent cross-linker. Nature Communications, 2014, 5: 5591

    Article  CAS  Google Scholar 

  36. Bolton J L, Sevestre H, Ibe B O, Thompson J A. Formation and reactivity of alternative quinone methides from butylated hydroxytoluene: Possible explanation for species-specific pneumotoxicity. Chemical Research in Toxicology, 1990, 3: 65–70

    Article  CAS  Google Scholar 

  37. Wang H, Wahi M S, Rokita S E. Immortalizing a transient electrophile for DNA cross-linking. Angewandte Chemie International Edition, 2008, 47: 1291–1293

    Article  CAS  Google Scholar 

  38. Wang H, Rokita S E. Dynamic cross-linking is retained in duplex DNA after multiple exchange of strands. Angewandte Chemie International Edition, 2010, 49: 5957–5960

    Article  CAS  Google Scholar 

  39. Laganis E D, Chenard B L. Metal silanolates: Organic soluble equivalents for O–2. Tetrahedron Letters, 1984, 25: 5831–5834

    Article  CAS  Google Scholar 

  40. Shirali A, Sriram M, Hall J J, Nguyen B L, Guddneppanavar R, HadimaniMB, Ackley J F, Siles R, Jelinek C J, Arthasery P, Brown R C, Murrell V L. MeModie A, Sharma S, Chaplin D J, Pinney K G. Development of synthetic methodology suitable for the radiosynthesis of combretastatin A-1 (CA1) and its corresponding prodrug CA1P. Journal of Natural Products, 2009, 72: 414–421

    Article  CAS  Google Scholar 

  41. Mangas-Sánchez J, Rodriguez-Mata M, Busto E, Gotor-Fernández V, Gotor V. Chemoenzymatic synthesis of rivastigmine based on lipase-catalyzed processes. Journal of Organic Chemistry, 2009, 74: 5304–5310

    Article  Google Scholar 

  42. Rokita S E. Reversible alkylation of DNA by quinone methides. Hoboken: Wiley, 2009, 297–327

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven E. Rokita.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Rokita, S.E. DNA alkylation promoted by an electron-rich quinone methide intermediate. Front. Chem. Sci. Eng. 10, 213–221 (2016). https://doi.org/10.1007/s11705-015-1541-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-015-1541-3

Keywords

Navigation