Skip to main content
Log in

Cryo-copolymerization preparation of dextran-hyaluronate based supermacroporous cryogel scaffolds for tissue engineering applications

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Dextran-hyaluronate (Dex-HA) based supermacroporous cryogel scaffolds for soft tissue engineering were prepared by free radical cryo-copolymerization of aqueous solutions containing the dextran methacrylate (Dex-MA) and hyaluronate methacrylate (HA-MA) at various macromonomer concentrations under the freezing condition. It was observed that the suitable total concentration of macromonomers for the preparation of Dex-HA cryogel scaffold with satisfied properties was 5% (w/w) at the HA-MA concentration of 1% (w/v), which was then used to produce the test scaffold. The obtained cryogel scaffold with 5% (w/w) macromonomer solution had high water permeability (5.1 × 10−12 m2) and high porosity (92.4%). The pore diameter examined by scanning electron microscopy (SEM) was in a broad range of 50–135 μm with the mean pore diameter of 91 μm. Furthermore, the cryogel scaffold also had good elastic nature with the elastic modulus of 17.47±1.44 kPa. The culture of 3T3-L1 preadipocyte within the scaffold was investigated and observed by SEM. Cells clustered on the pore walls and grew inside the scaffold indicating the Dex-HA cryogel scaffold could be a promising porous biomaterial for applications in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malafaya P B, Silva G A, Reis R L. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews, 2007, 59(4–5): 207–233

    Article  CAS  Google Scholar 

  2. Liu C, Xia Z, Czernuszka J. Design and development of threedimensional scaffolds for tissue engineering. Chemical Engineering Research & Design, 2007, 85(7): 1051–1064

    Article  CAS  Google Scholar 

  3. van Vlierberghe S, Cnudde V, Dubruel P, Masschaele B, Cosijns A, De Paepe I, Jacobs P J S, van Hoorebeke L, Remon J P, Schacht E. Porous gelatin hydrogels: cryogenic formation and structure analysis. Biomacromolecules, 2007, 8(2): 331–337

    Article  Google Scholar 

  4. Kathuria N, Tripathi A, Kar K, Kumar A. Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering. Acta Biomaterialia, 2009, 5(1): 406–418

    Article  CAS  Google Scholar 

  5. Lévesque S G, Lim R M, Shoichet M S. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials, 2005, 26(35): 7436–7446

    Article  Google Scholar 

  6. Möller S, Weisser J, Bischoff S, Schnabelrauch M. Dextran and hyaluronan methacrylate based hydrogels as matrices for soft tissue reconstruction. Biomolecular Engineering, 2007, 24(5): 496–504

    Article  Google Scholar 

  7. Autissier A, Visage C L, Pouzet C, Chaubet F, Letourneur D. Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomaterialia, 2010, 6(9): 3640–3648

    Article  CAS  Google Scholar 

  8. Davidenko N, Campbell J J, Thian E S, Watson C J, Cameron R E. Collagen-hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomaterialia, 2010, 6(10): 3957–3968

    Article  CAS  Google Scholar 

  9. Ibrahim S, Kothapalli C R, Kang Q K, Ramamurthi A. Characterization of glycidyl ethacrylate-crosslinked hyaluronan hydrogel scaffolds incorporating elastogenic hyaluronan oligomers. Acta Biomaterialia, 2010, 7(3): 653–665

    Google Scholar 

  10. Bloch K, Lozinsky V I, Galaev I Y, Yavriyanz K, Vorobeychik M, Azarov D, Damshkaln L G, Mattiasson B, Vardi P. Functional activity of insulinoma cells (INS-1E) and pancreatic islets cultured in agarose cryogel sponges. Journal of Biomedical Materials Research, 2005, 75(4): 802–809

    CAS  Google Scholar 

  11. Plieva F M, Oknianska A, Degerman E, Galaev I Y, Mattiasson B. Novel supermacroporous dextran gels. Journal of Biomaterials Science, Polymer Edition, 2006, 17(10): 1075–1092

    Article  CAS  Google Scholar 

  12. Plieva F M, Xiao H T, Galaev I Y, Bergenståhl B, Mattiasson B. Macroporous elastic polyacrylamide gels prepared at subzero temperatures: control of porous structure. Journal of Materials Chemistry, 2006, 16(41): 4065–4073

    Article  CAS  Google Scholar 

  13. Plieva FM, Galaev I Y, Mattiasson B. Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate-containing fluids and cell culture applications. Journal of Separation Science, 2007, 30(11): 1657–1671

    Article  CAS  Google Scholar 

  14. Dainiak M B, Allan I U, Savina I N, Cornelio L, James E S, James S L, Mikhalovsky S V, Jungvid H, Galaev I Y. Gelatin-fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study. Biomaterials, 2010, 31(1): 67–76

    Article  CAS  Google Scholar 

  15. Lozinsky V I. Cryogels on the basis of natural and synthetic polymers: preparation, properties and applications. Russian Chemical Reviews, 2002, 71(6): 489–511

    Article  CAS  Google Scholar 

  16. Lozinsky V I. Polymeric cryogels as a new family of macroporous and supermacroporous materials for biotechnological purposes. Russian Chemical Bulletin, 2008, 57(5): 1015–1032

    Article  CAS  Google Scholar 

  17. Yao K J, Yun J X, Shen S C, Wang L H, He X J, Yu X M. Characterization of a novel continuous supermacroporous monolithic cryogel embedded with nanoparticles for protein chromatography. Journal of Chromatography A, 2006, 1109(1): 103–110

    Article  CAS  Google Scholar 

  18. Yun J X, Shen S C, Chen F, Yao K J. One-step isolation of adenosine triphosphate from crude fermentation broth of Saccharomyces cerevisiae by anion-exchange chromatography using supermacroporous cryogel. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 2007, 860(1): 57–62

    Article  CAS  Google Scholar 

  19. Plieva F M, Galaev I, Noppe W, Mattiasson B. Cryogel applications in microbiology. Trends in Microbiology, 2008, 16(11): 543–551

    Article  CAS  Google Scholar 

  20. Nilsang S, Nehru V, Plieva F M, Nandakumar K S, Rakshit S K, Holmdahl R, Mattiasson B, Kuma A. Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles. Biotechnology Progress, 2008, 24(5): 1122–1131

    Article  CAS  Google Scholar 

  21. Kirsebom H, Aguilar M R, Roman J S, Fernandez M, Prieto M A, Bondar B. Macroporous scaffolds based on chitosan and bioactive molecules. Journal of Bioactive and Compatible Polymers, 2007, 22(6): 621–636

    Article  CAS  Google Scholar 

  22. Cadéel J A, van Luyn M J A, Brouwer L A, Plantinga J A, van Wachem P B, de Groot C J, den Otter W, Hennink W E. In vivo biocompatibility of dextran-based hydrogels. Journal of Biomedical Materials Research, 2000, 50(3): 397–404

    Article  Google Scholar 

  23. de Groot C J, van Luyn M J A, van Dijk-Wolthuis W N E, Cadéel J A, Plantinga J A, den Otter W, Hennink W E. In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts. Biomaterials, 2001, 22(11): 1197–1203

    Article  Google Scholar 

  24. Liu Y X, Chan-Park M B. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials, 2009, 30(2): 196–207

    Article  Google Scholar 

  25. van Dijk-Wolthuis W N E, Franssen O, Talsma H, van Steenbergen M J, Kettenes-van den Bosch J J, Hennink W E. Synthesis, characterization, and polymerization of glycidyl methacrylate derivatized dextran. Macromolecules, 1995, 28(18): 6317–6322

    Article  Google Scholar 

  26. van Dijk-Wolthuis W N E, Kettenes-van den Bosch J J, van der Kerk-van Hoof A, Hennink W E. Reaction of dextran with glycidyl methacrylate: an unexpected transesterification. Macromolecules, 1997, 30(11): 3411–3413

    Article  Google Scholar 

  27. Yao K J, Shen S C, Yun J X, Wang L H, He X J, Yu XM. Preparation of polyacrylamide-based supermacroporous monolithic cryogel beds under freezing-temperature variation conditions. Chemical Engineering Science, 2006, 61(20): 6701–6708

    Article  CAS  Google Scholar 

  28. Weng L H, Gouldstone A, Wu Y H, Chen W. Mechanically strong double network photo cross linked hydrogels from N,N-dimethylacrylamide and glycidyl methacrylated hyaluronan. Biomaterials, 2008, 29(14): 2153–2163

    Article  CAS  Google Scholar 

  29. Harley B A, Leung J H, Silva E C C M, Gibson L J. Mechanical characterization of collagen-glycosaminoglycan scaffolds. Acta Biomaterialia, 2007, 3(4): 463–474

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junxian Yun or Dong-Qiang Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, D., Shen, S., Yun, J. et al. Cryo-copolymerization preparation of dextran-hyaluronate based supermacroporous cryogel scaffolds for tissue engineering applications. Front. Chem. Sci. Eng. 6, 339–347 (2012). https://doi.org/10.1007/s11705-012-1209-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-012-1209-1

Keywords

Navigation