Skip to main content
Log in

Advances and perspectives in catalysts for liquid-phase oxidation of cyclohexane

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The latest progress and developments in catalysts for the oxidation of cyclohexane are reviewed. Catalytic systems for the oxidation of cyclohexane including metal supported, metal oxides, molecular sieves, metal substituted polyoxometalates, photocatalysts, organocatalysts, Gif systems, metal-organic catalysts and metalloporphyrins are discussed with a particular emphasis on metalloporphyrin catalytic systems. The advantages and disadvantages of these methods are summarized and analyzed. Finally, the development trends in the oxidation technology of cyclohexane are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Labinger J A, Bercaw J E. Understanding and exploiting C-H bond activation. Nature, 2002, 417(6888): 507–514

    Article  CAS  Google Scholar 

  2. Newhouse T, Baran P S. If C-H bonds could talk: Selective C-H bond oxidation. Angewandte Chemie International Edition, 2011, 50(15): 3362–3374

    Article  CAS  Google Scholar 

  3. Neuenschwander U, Turra N, Aellig C, Mania P, Hermans I. Understanding selective oxidations. Chimia, 2010, 64(4): 225–230

    Article  CAS  Google Scholar 

  4. Jevtic R, Ramachandran P A, Dudukovic M P. Effect of oxygen on cyclohexane oxidation: a stirred tank study. Industrial & Engineering Chemistry Research, 2009, 48(17): 7986–7993

    Article  CAS  Google Scholar 

  5. Guha S K, Obora Y, Ishihara D, Matsubara H, Ryu I, Ishii Y. Aerobic oxidation of cyclohexane using N-hydroxyphthalimide bearing fluoroalkyl chains. Advanced Synthesis & Catalysis, 2008, 350(9): 1323–1330

    Article  CAS  Google Scholar 

  6. Yuan Y, Ji H B, Chen Y X, Han Y, Song X F, She Y B, Zhong R G. Study on reaction conditions of biomimetic synthesis of adipic acid from cyclohexane by catalytic oxidation with oxygen. Modern Chemical Industry, 2004, 24(6): 40–42 (in Chinese)

    Google Scholar 

  7. Yuan Y, Ji H B, Chen Y X, Han Y, Song X F, She Y B, Zhong R G. Oxidation of cyclohexane to adipic acid using Fe-porphyrin as a biomimetic catalyst. Organic Process Research & Development, 2004, 8(3): 418–420

    Article  CAS  Google Scholar 

  8. Borah P, Datta A. Exfoliated VOPO4·2H2O dispersed on alumina as a novel catalyst for the selective oxidation of cyclohexane. Applied Catalysis A: General, 2010, 376(1–2): 19–24

    Article  CAS  Google Scholar 

  9. Borah P, Ramesh A, Datta A. Dispersion of VOPO4·2H2O on different supports through exfoliation and their catalytic activity for the selective oxidation of cyclohexane. Catalysis Communications, 2010, 12(2): 110–115

    Article  CAS  Google Scholar 

  10. Zhou L P, Xu J, Miao H, Wang F, Li X Q. Catalytic oxidation of cyclohexane to cyclohexanol and cyclohexanone over Co3O4 nanocrystals with molecular oxygen. Applied Catalysis A: General, 2005, 292: 223–228

    Article  CAS  Google Scholar 

  11. Yuan W W, Guo Z W, Jin H B. Synthesis of nanostructured iron oxide and its effect on the cyclohexane oxidation reaction. Journal of Beijing University of Chemical Technology, 2008, 35(4): 6–10 (in Chinese)

    CAS  Google Scholar 

  12. Tong J, Bo L, Li Z, Lei Z, Xia C. Magnetic CoFe2O4 nanocrystal: a novel and efficient heterogeneous catalyst for aerobic oxidation of cyclohexane. Journal of Molecular Catalysis A: Chemical, 2009, 307(1–2): 58–63

    Article  CAS  Google Scholar 

  13. Zhou L P, Yang G Y, Zhang W, Sun Z Q, Gao J, Miao H, Chen C, Ma H, Li X Q, Zhang Q H, Wang F, Tong X L, Xu J. Advances and perspectives in catalytic oxidation of hydrocarbons in liquid phase. Progress in Natural Science, 2007, 17(9): 1003–1011

    CAS  Google Scholar 

  14. Li L, Ji W J, Au C T. Gold nanoparticles supported on mesoporous silica and their catalytic application. Progress in Chemistry, 2009, 21(9): 1742–1749 (in Chinese)

    CAS  Google Scholar 

  15. Zhao R, Ji D, Lv G M, Qian G, Yan L, Wang X L, Suo J S. A highly efficient oxidation of cyclohexane over Au/ZSM-5 molecular sieve catalyst with oxygen as oxidant. Chemical Communications, 2004, (7): 904–905

    Article  Google Scholar 

  16. Lu G M, Zhao R, Qian G, Qi Y X, Wang X L, Suo J S. A highly efficient catalyst Au/MCM-41 for selective oxidation cyclohexane using oxygen. Catalysis Letters, 2004, 97(3–4): 115–118

    Article  Google Scholar 

  17. Gui J Z, Du J L, Liu D, Song L J, Zhang X T, Sun Z L. Synthesis and catalytic properties of Au-SBA-15 mesoporous zeolite. Industrial Catalysis, 2006, 14(5): 56–60 (in Chinese)

    CAS  Google Scholar 

  18. Xu L X, He C H, Zhu MQ, Wu K J, Lai Y L. Surface stabilization of gold by sol-gel post-modification of alumina support with silica for cyclohexane oxidation. Catalysis Communications, 2008, 9(5): 816–820

    Article  CAS  Google Scholar 

  19. Xu L X, He C H, Zhu M Q, Fang S. A highly active Au/Al2O3 catalyst for cyclohexane oxidation using molecular oxygen. Catalysis Letters, 2007, 114(3–4): 202–205

    Article  CAS  Google Scholar 

  20. Xu L X, He C H, Zhu M Q, Wu K J, Lai Y L. Silica-supported gold catalyst modified by doping with titania for cyclohexane oxidation. Catalysis Letters, 2007, 118(3–4): 248–253

    Article  CAS  Google Scholar 

  21. Xu L X, He C H, Zhu M Q, Wu K J, Xu Y L, Zhao J. Cyclohexane oxidation over nano gold catalysts supported on zirconia-modified alumina. Journal of Chemical Engineering of Chinese Universities, 2009, 23(2): 309–313 (in Chinese)

    CAS  Google Scholar 

  22. Wang J Y, Zhao H, Zhang X J, Liu R J, Hu Y Q. Oxidation of cyclohexane catalyzed by TS-1 in ionic liquid with tert-butylhydroperoxide. Chinese Journal of Chemical Engineering, 2008, 16(3): 373–375

    Article  Google Scholar 

  23. Selvam P, Paulose T A P. Transition-metal (Ti, V, Cr, Mn, Fe, Co, Cu) containing ordered nanoporous materials: novel heterogeneous catalysts for selective oxidation reactions. Journal of Nanoscience and Nanotechnology, 2006, 6(6): 1758–1764

    Article  CAS  Google Scholar 

  24. Li J, Li X, Shi Y, Mao D, Lu G. Selective oxidation of cyclohexane by oxygen in a solvent-free system over lanthanide-containing AlPO-5. Catalysis Letters, 2010, 137(3–4): 180–189

    Article  CAS  Google Scholar 

  25. Arends I W C E, Sheldon R A. Activities and stabilities of heterogeneous catalysts in selective liquid phase oxidations: recent developments. Applied Catalysis A: General, 2001, 212(1–2): 175–187

    Article  CAS  Google Scholar 

  26. Sheldon R A, Wallau M, Arends I W C E, Schuchardt U. Heterogeneous catalysts for liquid-phase oxidations: Philosophers’ stones or trojan horses? Accounts of Chemical Research, 1998, 31(8): 485–493

    Article  CAS  Google Scholar 

  27. Lee J K, Melsheimer J, Berndt S, Mestl G, Schlögl R, Köhler K. Transient responses of the local electronic and geometric structures of vanado-molybdo-phoshate catalysts H3+n PVnMo12 − n O40 in selective oxidation. Applied Catalysis A: General, 2001, 214(1): 125–148

    Article  CAS  Google Scholar 

  28. Simões MMQ, Conceição CMM, Gamelas J A F, Domingues PM D N, Cavaleiro A M V, Cavaleiro J A S, Ferrer-Correia A J V, Johnstone R A W. Keggin-type polyoxotungstates as catalysts in the oxidation of cyclohexane by dilute aqueous hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 1999, 144(3): 461–468

    Article  Google Scholar 

  29. Jing S B, Guan J Q, Wang Z L, Zhu W C, Wang G J. Application of Dawson-type molybdovanadophosphoric heteropolyacid to oxidation of cyclohexane. Journal of Jilin University, 2008, 46(2): 336–340 (Science Edition) (in Chinese)

    CAS  Google Scholar 

  30. Maldotti A, Molinari A, Amadelli R. Photocatalysis with organized systems for the oxofunctionalization of hydrocarbons by O2. Chemical Reviews, 2002, 102(10): 3811–3836

    Article  CAS  Google Scholar 

  31. Brusa M A, Grela M A. Photon flux and wavelength effects on the selectivity and product yields of the photocatalytic air oxidation of neat cyclohexane on TiO2 particles. Journal of Physical Chemistry B, 2005, 109(5): 1914–1918

    Article  CAS  Google Scholar 

  32. Shimizu K I, Murata Y, Satsuma A. Dicopper(II)-dioxygen complexes in Y zeolite for selective catalytic oxidation of cyclohexane under photoirradiation. Journal of Physical Chemistry C, 2007, 111(51): 19043–19051

    Article  CAS  Google Scholar 

  33. Ishii Y, Sakaguchi S. A new strategy for alkane oxidation with O2 using N-hydroxyphthalimide (NHPI) as a radical catalyst. Catalysis Surveys from Japan, 1999, 3(1): 27–35

    Article  CAS  Google Scholar 

  34. Ishii Y, Sakaguchi S, Iwahama T. Innovation of hydrocarbon oxidation with molecular oxygen and related reactions. Advanced Synthesis & Catalysis, 2001, 343(5): 393–427

    Article  CAS  Google Scholar 

  35. Sawatari N, Yokota T, Sakaguchi S, Ishii Y. Alkane oxidation with air catalyzed by lipophilic N-hydroxyphthalimides without any solvent. Journal of Organic Chemistry, 2001, 66(23): 7889–7891

    Article  CAS  Google Scholar 

  36. Baucherel X, Gonsalvi L, Arends IWC E, Ellwood S, Sheldon R A. Aerobic oxidation of cycloalkanes, alcohols and ethylbenzene catalyzed by the novel carbon radical chain promoter NHS (Nhydroxysaccharin). Advanced Synthesis & Catalysis, 2004, 346(2–3): 286–296

    Article  CAS  Google Scholar 

  37. Yang G Y, Zhang Q H, Miao H, Tong X L, Xu J. Selective organocatalytic oxygenation of hydrocarbons by dioxygen using anthraquinones and N-hydroxyphthalimide. Organic Letters, 2005, 7(2): 263–266

    Article  CAS  Google Scholar 

  38. Yang G Y, Ma Y F, Xu J. Biomimetic catalytic system driven by electron transfer for selective oxygenation of hydrocarbon. Journal of the American Chemical Society, 2004, 126(34): 10542–10543

    Article  CAS  Google Scholar 

  39. Tong X L, Xu J, Miao H. Highly efficient and metal-free aerobic hydrocarbons oxidation process by an o-phenanthroline-mediated organocatalytic system. Advanced Synthesis & Catalysis, 2005, 347(15): 1953–1957

    Article  CAS  Google Scholar 

  40. Detoni C, Carvalho NMF, Aranda D A G, Louis B, Antunes O A C. Cyclohexane and toluene oxidation catalyzed by 1,10-phenanthroline Cu(II) complexes. Applied Catalysis A: General, 2009, 365(2): 281–286

    Article  CAS  Google Scholar 

  41. Ison A, Xu C, Weakley G K, Richardson D E. Catalytic autoxidations using tris-diimine iron(II) coordination complexes. Journal of Molecular Catalysis A: Chemical, 2008, 293(1–2): 1–7

    Article  CAS  Google Scholar 

  42. Suzuki Y, Harada E, Nakamaru K, Takeda Y, Sano M, Hashimoto K, Miyake T. Direct oxidation of cycloalkanes with molecular oxygen to dicarboxylic acids using isoamyl nitrite. Journal of Molecular Catalysis A: Chemical, 2007, 276(1–2): 1–7

    Article  CAS  Google Scholar 

  43. Bonnet D, Ireland T, Fache E, Simonato J P. Innovative direct synthesis of adipic acid by air oxidation of cyclohexane. Green Chemistry, 2006, 8(6): 556–559

    Article  CAS  Google Scholar 

  44. Barton D H R, Lee K W, Mehl W, Ozbalik N, Zhang L. Functionalization of saturated-hydrocarbons. 17. Reactivity of carbon-carbon double bonds. Tetrahedron, 1990, 46(11): 3753–3768

    Article  CAS  Google Scholar 

  45. Sun X L, Jin H. Catalytic oxidation of cyclohexane to cyclohexanone by GoAggII system. Chinese Journal of Synthetic Chemistry, 2008, 16(4): 451–453 (in Chinese)

    CAS  Google Scholar 

  46. Nayak S, Gamez P, Kozlevčar B, Pevec A, Roubeau O, Dehnen S, Reedijk J. Coordination compounds from the planar tridentate Schiff-base ligand 2-methoxy-6-((quinolin-8-ylimino)methyl)-phenol (mqmpH) with several transition metal ions: Use of [FeIII(mqmp)(CH3OH)Cl2] in the catalytic oxidation of alkanes and alkenes. Polyhedron, 2010, 29(11): 2291–2296

    Article  CAS  Google Scholar 

  47. Hitomi Y, Furukawa S, Higuchi M, Shishido T, Tanaka T. Alkane hydroxylation catalyzed by a series of mononuclear nonheme iron complexes containing 4-nitropyridine ligands. Journal of Molecular Catalysis A: Chemical, 2008, 288(1–2): 83–86

    Article  CAS  Google Scholar 

  48. Mansuy D. A brief history of the contribution of metalloporphyrin models to cytochrome P450 chemistry and oxidation catalysis. Comptes Rendus Chimie, 2007, 10(4–5): 392–413

    Article  CAS  Google Scholar 

  49. Bagchi V, Bandyopadhyay D. The porphyrin complex catalyzed dioxygen activation in presence of solid inorganic phosphates and small quantities of t-BuOOH. Polyhedron, 2008, 27(5): 1387–1392

    Article  CAS  Google Scholar 

  50. Guo C C, Chu M F, Liu Q, Liu Y, Guo D C, Liu X Q. Effective catalysis of simple metalloporphyrins for cyclohexane oxidation with air in the absence of additives and solvents. Applied Catalysis A: General, 2003, 246(2): 303–309

    Article  CAS  Google Scholar 

  51. Haranaka M, Hara A, Ando W, Akasaka T. Oxygen atom transfer from carbonyl oxide to alkane catalyzed by metalloporphyrin. Tetrahedron Letters, 2009, 50(26): 3585–3587

    Article  CAS  Google Scholar 

  52. Poltowicz J, Pamin K, Haber J. Influence of manganese tetraarylporphyrins substituents on the selectivity of cycloalkanes oxidation with magnesium monoperoxyphthalate. Journal of Molecular Catalysis A: Chemical, 2006, 257(1–2): 154–157

    Article  CAS  Google Scholar 

  53. Chen Y X, She Y B, Xu J, Li Y. Studies on QSAR of metalloporphyrin catalysts in the oxidation of cyclohexane to adipic acid. Frontiers of Chemical Engineering in China, 2007, 1(2): 155–161

    Article  CAS  Google Scholar 

  54. Hu B Y, Yuan Y J, Xiao J, Guo C C, Liu Q, Tan Z, Li Q H. Rational oxidation of cyclohexane to cyclohexanol, cyclohexanone and adipic acid with air over metalloporphyrin and cobalt salt. Journal of Porphyrins and Phthalocyanines, 2008, 12(1): 27–34

    Article  CAS  Google Scholar 

  55. da Silva D C, de Freitas-Silva G, do Nascimento E, Reboucas J S, Barbeira P J S, de Carvalho M E M D, Idemori Y M. Spectral, electrochemical, and catalytic properties of a homologous series of manganese porphyrins as cytochrome P450 model: The effect of the degree of β-bromination. Journal of Inorganic Biochemistry, 2008, 102(10): 1932–1941

    Article  Google Scholar 

  56. Rutkowska-Zbik D, Witko M. Following nature-theoretical studies on factors modulating catalytic activity of porphyrins. Journal of Molecular Catalysis A: Chemical, 2006, 258(1–2): 376–380

    Article  CAS  Google Scholar 

  57. Ma D S, Hu B C, Lu C X. Selective aerobic oxidation of cyclohexane catalyzed by metallodeuteroporphyrin-IX-dimethylester. Catalysis Communications, 2009, 10(6): 781–783

    Article  CAS  Google Scholar 

  58. Hu B C, Zhou WY, Ma D S, Liu Z L. Metallo-deuteroporphyrins as catalysts for the oxidation of cyclohexane with air in the absence of additives and solvents. Catalysis Communications, 2008, 10(1): 83–85

    Article  CAS  Google Scholar 

  59. Zhou WY, Hu B C, Xu S C, Sun C G, Liu Z L. Catalysis of metallodeuteroporphyrins for cyclohexane oxidation with air. Chemical Journal of Chinese Universities, 2010, 31(4): 723–726 (in Chinese)

    CAS  Google Scholar 

  60. Zhou W Y, Hu B C, Liu Z L. Selective oxidation of cyclohexane catalyzed by metallo-deuteroporphyrins in homogeneous solution. Chinese Journal of Applied Chemistry, 2010, 27(4): 424–427 (in Chinese)

    Article  CAS  Google Scholar 

  61. Zhang R, Yu WY, Che C M. Catalytic enantioselective oxidation of aromatic hydrocarbons with D4-symmetric chiral ruthenium porphyrin catalysts. Tetrahedron: Asymmetry, 2005, 16(21): 3520–3526

    Article  CAS  Google Scholar 

  62. Monfared H H, Aghapoor V, Ghorbanloo M, Mayer P. Highly selective olefin epoxidation with the bicarbonate activation of hydrogen peroxide in the presence of manganese(III) mesotetraphenylporphyrin complex: Kptimization of effective parameters using the Taguchi method. Applied Catalysis A: General, 2010, 372(2): 209–216

    Article  CAS  Google Scholar 

  63. Xie J, Wang Y J, Wei Y. Immobilization of manganese tetraphenylporphyrin on Au/SiO2 as new catalyst for cyclohexane oxidation with air. Catalysis Communications, 2009, 11(2): 110–113

    Article  CAS  Google Scholar 

  64. Fu B, Yu H C, Huang JW, Zhao P, Liu J, Ji L N. Mn(III) porphyrins immobilized on magnetic polymer nanospheres as biomimetic catalysts hydroxylating cyclohexane with molecular oxygen. Journal of Molecular Catalysis A: Chemical, 2009, 298(1–2): 74–80

    Article  CAS  Google Scholar 

  65. Cai J H, Huang J W, Zhao P, Ye Y J, Yu H C, Ji L N. Silicametalloporphyrins hybrid materials: preparation and catalysis to hydroxylate cyclohexane with molecular oxygen. Journal of Sol-Gel Science and Technology, 2009, 50(3): 430–436

    Article  CAS  Google Scholar 

  66. Wang X T, Chu M F, Guo C C. Catalysis of manganeseporphyrin supported on imidazole-modified silica gel for cyclohexane oxidation with air. Chemical Journal of Chinese Universities, 2005, 26(1): 64–67 (in Chinese)

    Google Scholar 

  67. Liu C X, Liu Q, Guo C C, Tan Z. Preparation and characterization of novel magnetic nanocomposite-bonded metalloporphyrins as biomimetic nanocatalysts. Journal of Porphyrins and Phthalocyanines, 2010, 14(9): 825–831

    Article  CAS  Google Scholar 

  68. Liu C X, Liu Q, Guo C C. Synthesis and catalytic abilities of silicacoated Fe3O4 nanoparticle bonded metalloporphyrins with different saturation magnetization. Catalysis Letters, 2010, 138(1–2): 96–103

    Article  CAS  Google Scholar 

  69. Machado G S, Castro K A D F, de Lima O J, Nassar E J, Ciuffi K J, Nakagaki S. Aluminosilicate obtained by sol-gel process as support for an anionic iron porphyrin: Development of a selective and reusable catalyst for oxidation reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 349(1–3): 162–169

    Article  CAS  Google Scholar 

  70. Moghadam M, Mirkhani V, Tangestaninejad S, Mohammdpoor-Baltork I, Kargar H. Silica supported Mn(Br8TPP)Cl and Mn(TPP)Cl as efficient and reusable catalysts for selective hydrocarbon oxidation under various reaction conditions: the effect of substituted bromines on the catalytic activity and reusability. Journal of Molecular Catalysis A: Chemical, 2008, 288(1–2): 116–124

    Article  CAS  Google Scholar 

  71. Matachowski L, Pamin K, Poltowicz J, Serwicka E M, Jones W, Mokaya R. Oxidation of cyclooctane over metalloporphyrin-exchanged Al, Si-mesoporous molecular sieves of HMS (MMS) type. Applied Catalysis A: General, 2006, 313(1): 106–111

    Article  CAS  Google Scholar 

  72. Farzaneh F, Poorkhosravani M, Ghandi M. Utilization of immobilized biomimetic iron complexes within nanoreactors of Al-MCM-41 as cyclohexane oxidation catalyst. Journal of Molecular Catalysis A: Chemical, 2009, 308(1–2): 108–113

    Article  CAS  Google Scholar 

  73. Raja R, Ratnasamy P. Oxidation of cyclohexane over copper phthalocyanines encapsulated in zeolites. Catalysis Letters, 1997, 48(1–2): 1–10

    Article  CAS  Google Scholar 

  74. Ratnasamy P, Srinivas D. Selective oxidations over zeolite- and mesoporous silica-based catalysts: Selected examples. Catalysis Today, 2009, 141(1–2): 3–11

    Article  CAS  Google Scholar 

  75. Mirkhani V, Moghadam M, Tangestaninejad S, Kargar H. Mn(Br8TPP)Cl supported on polystyrene-bound imidazole: An efficient and reusable catalyst for biomimetic alkene epoxidation and alkane hydroxylation with sodium periodate under various reaction conditions. Applied Catalysis A: General, 2006, 303(2): 221–229

    Article  CAS  Google Scholar 

  76. Huang G, Guo C C, Tang S S. Catalysis of cyclohexane oxidation with air using various chitosan-supported metallotetraphenylporphyrin complexes. Journal of Molecular Catalysis A: Chemical, 2007, 261(1): 125–130

    Article  CAS  Google Scholar 

  77. Tangestaninejad S, Habibi M H, Mirkhani V, Moghadam M. Mn(Br8TPPS) supported on Amberlite IRA-400 as a robust and efficient catalyst for alkene epoxidation and alkane hydroxylation. Molecules, 2002, 7(2): 264–270

    Article  CAS  Google Scholar 

  78. Tangestaninejad S, Habib M H, Mirkhani V, Moghadam M. Preparation of an insoluble polymer-supported Mn(III) porphyrin and its use as a new alkene epoxidation and alkane hydroxylation catalyst. Journal of Chemical Research, 2001, (10): 444–445

  79. Castro K A D F, Bail A, Groszewicz P B, Machado G S, Schreiner WH, Wypych F, Nakagaki S. New oxidation catalysts based on iron (III) porphyrins immobilized on Mg-Al layered double hydroxides modified with triethanolamine. Applied Catalysis A: General, 2010, 386(1–2): 51–59

    Article  CAS  Google Scholar 

  80. Halma M, Castro K A D D, Prevot V, Forano C, Wypych F, Nakagaki S. Immobilization of anionic iron(III) porphyrins into ordered macroporous layered double hydroxides and investigation of catalytic activity in oxidation reactions. Journal of Molecular Catalysis A: Chemical, 2009, 310(1–2): 42–50

    Article  CAS  Google Scholar 

  81. Huang G, Liu S Y, Guo Y A, Wang A P, Luo J, Cai C C. Immobilization of manganese tetraphenylporphyrin on boehmite and its catalysis for aerobic oxidation of cyclohexane. Applied Catalysis A: General, 2009, 358(2): 173–179

    Article  CAS  Google Scholar 

  82. Guo C C, Xu J B, Long M J, Huang Z M, Liang B X. Study on catalysis of sepiolite-supported metalloporphyrins for cyclohexane oxidation with PhIO. Journal of Hunan University (Natural Sciences Edition), 1999, 26(3): 18–21 (in Chinese)

    Google Scholar 

  83. Lyons J E, Ellis P E, Myers H K. Halogenated metalloporphyrin complexes as catalysts for selective reactions of acyclic alkanes with molecular oxygen. Journal of Catalysis, 1995, 155(1): 59–73

    Article  CAS  Google Scholar 

  84. Guo C C, Liu X Q, Liu Q, Liu Y, Chu M F, Lin W Y. First industrial-scale biomimetic oxidation of hydrocarbon with air over metalloporphyrins as cytochrome P-450 monooxygenase model and its mechanistic studies. Journal of Porphyrins and Phthalocyanines, 2009, 13(12): 1250–1254

    Article  CAS  Google Scholar 

  85. Noack H, Georgiev V, Blomberg M R A, Siegbahn P E M, Johansson A J. Theoretical insights into heme-catalyzed oxidation of cyclohexane to adipic acid. Inorganic Chemistry, 2011, 50(4): 1194–1202

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanbin She.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., She, Y. & Wang, T. Advances and perspectives in catalysts for liquid-phase oxidation of cyclohexane. Front. Chem. Sci. Eng. 6, 356–368 (2012). https://doi.org/10.1007/s11705-012-0903-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-012-0903-3

Keywords

Navigation