Skip to main content
Log in

New microbial-friendly polyaniline nanoparticles on the base of nitrilotriacetic acid: comparison with PANI prepared by standard techniques

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This paper describes the influence of polyaniline (PANI) nanoparticles prepared in the presence of the nitrilotriacetic acid (NTA) in comparison with PANI prepared by standard techniques, on mixed microbial cultures in the form of a biological extract from soil and activated sludge and partially digested sludge, both sourced from a municipal wastewater treatment plant. The presence of PANI prepared by standard techniques in aqueous environment has a negative effect on the activity of mixed microbial cultures in the form of activated sludge, digested sludge (anaerobic conditions), and natural soil. According to biological oxygen demand (BOD) values—respirometric test, the slight inhibiting effect of nanoparticles is attributed to impurities and oligomers from aniline polymerization. The use of NTA in the production of PANI, resulted in nanotubes with channels through which NTA is incorporated into the structure. A sample thus obtained shows higher values of BOD, which is associated with the fact that NTA is released from PANI nanotube channels followed by its biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdolahi A, Hamzah E, Ibrahim Z, Hashim S (2012) Synthesis of uniform polyaniline nanofibers through interfacial polymerization. Materials 5(8):1487–1494. doi:10.3390/ma5081487

    Article  CAS  Google Scholar 

  • Araujo PLB, Ferreira C, Araujo FS (2011) Biodegradable conductive composites of poly(3-hydroxybutyrate) and polyaniline nanofibers: preparation, characterization and radiolytic effects. Express Polym Lett 5(1):12–22. doi:10.3144/expresspolymlett.2011.3

    Article  CAS  Google Scholar 

  • Arrambide G, Barrio DA, Etcheverry SB, Gambino D, Baran EJ (2010) Spectroscopic behavior and biological activity of K2[VO(O2)NTA]·2H2O. Biol Trace Elem Res 136(2):241–248. doi:10.1007/s12011-009-8538-z

    Article  CAS  Google Scholar 

  • Bhadra S, Khastgir D (2008) Determination of crystal structure of polyaniline and substituted polyanilines through powder X-ray diffraction analysis. Polym Test 27(7):851–857. doi:10.1016/j.polymertesting.2008.07.002

    Article  CAS  Google Scholar 

  • Binkauskiene E, Lugauskas A, Bukauskas V (2013) The mycological effect on morphological, electrochemical and redox properties of the polyaniline surface. Surf Interface Anal 45(11):1792–1798. doi:10.1002/sia.5324

    Article  CAS  Google Scholar 

  • Castagna R, Tunesi M, Saglio B, Della Pina C, Sironi A, Albani D, Bertarelli C, Falletta E (2016) Ultrathin electrospun PANI nanofibers for neuronal tissue engineering. J Appl Polym Sci 133(35):10. doi:10.1002/app.43885

    Article  Google Scholar 

  • Cheng D, Ng SC, Chan HSO (2005) Morphology of polyaniline nanoparticles synthesized in triblock copolymers micelles. Thin Solid Films 477(1–2):19–23. doi:10.1016/j.tsf.2004.08.105

    Article  CAS  Google Scholar 

  • Czech office for standards, metrology and testing (1999) Czech standard: Water Quality Evaluation of the “Ultimate” Anaerobic Biodegradability of Organic Compounds in Digested Sludge—Method by Measurement of the Biogas Production. CSN EN ISO 11734:1999. Praha

  • Dhand C, Das M, Sumana G, Srivastava AK, Pandey MK, Kim CG, Datta M, Malhotra BD (2010) Preparation, characterization and application of polyaniline nano spheres to biosensing. Nanoscale 2(5):747–754. doi:10.1039/b9nr00346k

    Article  CAS  Google Scholar 

  • Diaz AF, Logan JA (1980) Electroactive polyaniline films. J Electroanal Chem 111(1):111–114. doi:10.1016/s0022-0728(80)80081-7

    Article  CAS  Google Scholar 

  • Epstein AJ, Ginder JM, Zuo F, Woo HS, Tanner DB, Richter AF, Angelopoulos M, Huang WS, MacDiarmid AG (1987) Insulator-to-metal transition in polyaniline: effect of protonation in emeraldine. Synth Met 21:63–70. doi:10.1016/0379-6779(87)90067-1

    Article  CAS  Google Scholar 

  • Gong J, Li Y, Hu Z, Zhou Z, Deng Y (2010) Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers. J Phys Chem C 114:9970–9974. doi:10.1021/jp100685r

    Article  CAS  Google Scholar 

  • Gupta RK, Singh RA, Dubey SS (2004) Removal of mercury ions from aqueous solutions by composite of polyaniline with polystyrene. Sep Purif Technol 38:225–232. doi:10.1016/j.seppur.2003.11.009

    Article  CAS  Google Scholar 

  • Hongfang L, Huang L, Huang Z, Gongtai Q, Kei S, Harima Y (2008) Preparation of conducting poly N-methylaniline microsphere and its antibacterial performance to sulfate reducing bacteria. J Wuhan Univ Technol Mater Sci Ed 23(4):536–540. doi:10.1007/s11595-006-4536-6

    Article  Google Scholar 

  • Jiang N, Xu Y, Dai Y, Luo W, Dai L (2012) Polyaniline nanofibers assembled on alginate microsphere for Cu2 + and Pb2 + uptake. J Hazard Mater 215–216:17–24. doi:10.1016/j.jhazmat.2012.02.026

    Article  Google Scholar 

  • Julinova M, Dvorackova M, Kupec J, Hubackova J, Kopcilova M, Hoffmann J, Alexy P, Nahálková A, Vaskova I (2008) Influence of technological process on biodegradation of PVA/Waxy starch blends in an aerobic and anaerobic environment. J Polym Environ 16(4):241–249. doi:10.1007/s10924-008-0109-4

    Article  CAS  Google Scholar 

  • Julinová M, Kupec J, Slavík R, Vašková M (2013) Initiating biodegradation of polyvinylpyrrolidone in an aqueous aerobic environment: technical note/Zainicjowanie Biodegradacji Poliwinylopirolidonu W Środowisku Wodno-Tlenowym: Notatki Techniczne. Ecol Chem Eng S 20(1):199–208. doi:10.2478/eces-2013-0015

    Google Scholar 

  • Karthik R, Meenakshi S (2016) Biosorption of Pb(II) and Cd (II) ions from aqueous solution using polyaniline/chitin composite. Sep Sci Technol 51(5):733–742. doi:10.1080/01496395.2015.1130060

    Article  CAS  Google Scholar 

  • Konyushenko EN, Stejskal J, Sedenkova I, Trchova M, Sapurina I, Cieslar M, Prokes J (2006) Polyaniline nanotubes: conditions of formation. Polym Int 55(1):31–39. doi:10.1002/pi.1899

    Article  CAS  Google Scholar 

  • Kucekova Z, Kasparkova V, Humpolicek P, Sevcikova P, Stejskal J (2013) Antibacterial properties of polyaniline-silver films. Chem Pap 67(8):1103–1108. doi:10.2478/s11696-013-0385-x

    Article  CAS  Google Scholar 

  • Kumar A, Jangir LK, Kumari Y, Kumar M, Kumar V, Awasthi K (2016) Electrical behavior of dual-morphology polyaniline. J Appl Polym Sci. doi:10.1002/app.44091

    Google Scholar 

  • Langer K, Barczynski P, Baksalary K, Filipiak M, Golczak S, Langer JJ (2007) A fast and sensitive continuous flow nanobiodetector based on polyaniline nanofibrils. Microchim Acta 159(1–2):201–206. doi:10.1007/s00604-007-0767-2

    Article  CAS  Google Scholar 

  • Liao Y, Zhang C, Zhang Y, Strong V, Tang J, Li XG, Kalantar-Zadeh K, Hoek EM, Wang KL, Kaner RB (2011) Carbon nanotube/polyaniline composite nanofibers: facile synthesis and chemosensors. Nano Lett 11(3):954–959. doi:10.1021/nl103322b

    Article  CAS  Google Scholar 

  • Lu QF, Cheng XS (2009) Preparation of high-yield polyaniline nanofibers via an unstirred polymerization. E-polymers 9(1):1007–1016

    Google Scholar 

  • Morsi RE, Khamis EA, Al-Sabagh AM (2016) Polyaniline nanotubes: facile synthesis, electrochemical, quantum chemical characteristics and corrosion inhibition efficiency. J Taiwan Inst Chem Eng 60:573–581. doi:10.1016/j.jtice.2015.10.028

    Article  CAS  Google Scholar 

  • Nand AV, Ray S, Travas-Sejdic J, Kilmartin PA (2012) Characterization of antioxidant low density polyethylene/polyaniline blends prepared via extrusion. Mater Chem Phys 135(2–3):903–911. doi:10.1016/j.matchemphys.2012.05.077

    Article  CAS  Google Scholar 

  • Olad A, Nabavi R (2007) Application of polyaniline for the reduction of toxic Cr(VI) in water. J Hazard Mater 147:845–851. doi:10.1016/j.jhazmat.2007.01.083

    Article  CAS  Google Scholar 

  • Ping Z, Neugebauer H, Theiner J, Neckel A (1997) Protonation and electrochemical redox doping processes of polyaniline in aqueous solutions: investigations using in situ FTIR-ATR spectroscopy and a new doping system. J Chem Soc, Faraday Trans 93(1):121–129. doi:10.1039/A604620G

    Article  CAS  Google Scholar 

  • Prabhakaran MP, Ghasemi-Mobarakeh L, Ramakrishna S (2011) Electrospun composite nanofibers for tissue regeneration. J Nanosci Nanotechnol 11(4):3039–3057. doi:10.1166/jnn.2011.3753

    Article  CAS  Google Scholar 

  • Ruecha N, Rodthongkum N, Cate DM, Volckens J, Chailapakul O, Henry CS (2015) Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). Anal Chim Acta 874:40–48. doi:10.1016/j.aca.2015.02.064

    Article  CAS  Google Scholar 

  • Sapurina IY, Shishov MA (2012) Oxidative polymerization of aniline: molecular synthesis of polyaniline and the formation of supramolecular structures. INTECH, New Polym Spec Appl. doi:10.5772/48758

    Google Scholar 

  • Sapurina I, Stejskal J (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym Int 57(12):1295–1325. doi:10.1002/pi.2476

    Article  CAS  Google Scholar 

  • Stejskal J, Gilbert RG (2002) Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl Chem 74(5):857–867. doi:10.1351/pac200274050857

    Article  CAS  Google Scholar 

  • Stejskal J, Hlavatá D, Holler P, Trchová M, Prokeš J, Sapurina I (2004) Polyaniline prepared in the presence of various acids: a conductivity study. Polym Int 53(3):294–300. doi:10.1002/pi.1406

    Article  CAS  Google Scholar 

  • Stejskal J, Hajná M, Kašpárková V, Humpolíček P, Zhigunov A, Trchová M (2014) Purification of a conducting polymer, polyaniline, for biomedical applications. Synth Met 195:286–293. doi:10.1016/j.synthmet.2014.06.020

    Article  CAS  Google Scholar 

  • Zhang RH, Ma HZ, Wang B (2010) Removal of chromium(VI) from aqueous solutions using polyaniline doped with sulfuric acid. Ind Eng Chem Res 49(20):9998–10004. doi:10.1021/ie1008794

    Article  CAS  Google Scholar 

  • Zhang X, Qi H, Wang S, Feng L, Ji Y, Tao L, Li S, Wei Y (2012) Cellular responses of aniline oligomers: a preliminary study. Toxicol Res 1(3):201–205. doi:10.1039/c2tx20035j

    Article  CAS  Google Scholar 

  • Zhihua L, Xuetao H, Jiyong S, Xiaobo Z, Xiaowei H, Xucheng Z, Tahira HE, Holmesb M, Povey M (2016) Bacteria counting method based on polyaniline/bacteria thin film. Biosens Bioelectron 81:75–79. doi:10.1016/j.bios.2016.02.022

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by projects of the Ministry of Education, Youth, and Sports of the Czech Republic within the NPU I program (Contract Grant Number LO1504) and by an internal grant from Tomas Bata University in Zlin (IGA/FT/2016/012). Many thanks go to J. Stejskal for his thoughtful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markéta Julinová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyoralová, M., Slavík, R., Julinová, M. et al. New microbial-friendly polyaniline nanoparticles on the base of nitrilotriacetic acid: comparison with PANI prepared by standard techniques. Chem. Pap. 71, 347–357 (2017). https://doi.org/10.1007/s11696-016-0105-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0105-4

Keywords

Navigation