Skip to main content
Log in

Raman spectroelectrochemical study of electrodeposited polyaniline doped with polymeric sulfonic acids of different structures

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) films were prepared by electrochemical polymerization of aniline on Pt-electrode in aqueous medium in the presence of polymeric sulfonic acids distinguished by different flexibility of the polymer chain: (1) poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA, flexible chain); (2) poly(4-styrenesulfonic acid) (PSSA, flexible chain), (3) poly-4,4′-(2,2′-disulfoacid)-diphenylene-iso-phthalamide (i-PASA, semi-rigid chain); and (4) poly-4,4′-(2,2′-disulfoacid)-diphelylene-tere-phthalamide (t-PASA, rigid chain). Raman spectroelectrochemical studies using 532 nm laser excitation were carried out in aqueous HCl. The conventional HCl-doped PANI films were also studied for comparison. The results allowed one to distinguish the potential-dependent vibrations belonging to PANI and potential-independent vibrations belonging to the polyacids. In addition, amide C=O vibration was separated in the spectra by comparing the results for amide-containing (PAMPSA, i-PASA, and t-PASA) and amide-free (PSSA) PANI-polyacid complexes. The films of PANI-polyacid complexes demonstrated increased content of radical cation moieties at low potentials compared to PANI–HCl films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrantes LM, Correia JP, Savic M, Jin G (2001) Structural modifications during conducting polymer formation—an ellipsometric study. Electrochim Acta 46:3181–3187. doi:10.1016/S0013-4686(01)00610-7

    Article  CAS  Google Scholar 

  • Aoki K (1991) Simulated fractal formation in electrochemical switching of conducting polymer film into an insulating form on the basis of the propagation theory of the conductive zone. J Electroanal Chem Interfacial Electrochem 300:13–22. doi:10.1016/0022-0728(91)85380-8

    Article  CAS  Google Scholar 

  • Barbero C, Koetz R (1994) nanoscale dimensional changes and optical properties of polyaniline measured by in situ spectroscopic ellipsometry. J Electrochem Soc 141:859–865. doi:10.1149/1.2054847

    Article  CAS  Google Scholar 

  • Bazito FFC, Córdoba de Torresi SI, Torresi RM (2007) Charge compensation dynamics in a soluble copolymer of poly(aniline) and poly(phenylene sulfide). J Solid State Electrochem 11:1471–1479. doi:10.1007/s10008-007-0303-7

    Article  CAS  Google Scholar 

  • Bernard MC, Joiret S, Hugot-Le Goff A (2004) Spectroelectrochemical characterization of aniline/metanilic acid copolymers. Russ J Electrochem 40:235–244. doi:10.1023/B:RUEL.0000019659.63033.41

    Article  CAS  Google Scholar 

  • Blacha-Grzechnik A, Turczyn R, Burek M, Zak J (2014) In situ Raman spectroscopic studies on potential-induced structural changes in polyaniline thin films synthesized via surface-initiated electropolymerization on covalently modified gold surface. Vib Spectrosc 71:30–36. doi:10.1016/j.vibspec.2014.01.008

    Article  CAS  Google Scholar 

  • Cintra EP, Cordoba de Torresi SI (2002) Resonant Raman spectroscopy as a tool for determining the formation of a ladder structure in electropolymerized poly(5-amino-1-naphthol). J Electroanal Chem 518:33–40. doi:10.1016/S0022-0728(01)00696-9

    Article  CAS  Google Scholar 

  • Ćiric-Marjanović G, Trchová M, Matějka P, Holler P, Marjanović B, Juranić I (2006) Electrochemical oxidative polymerization of sodium 4-amino-3-hydroxynaphthalene-1-sulfonate and structural characterization of polymeric products. React Funct Polym 66:1670–1683. doi:10.1016/j.reactfunctpolym.2006.07.002

    Article  Google Scholar 

  • Cochet M, Louarn G, Quillard S, Buisson JP, Lefrant S (2000) Theoretical and experimental vibrational study of emeraldine in salt form. Part II. J Raman Spectrosc 31:1041–1049. doi:10.1002/1097-4555(200012)31:12<1041:AID-JRS641>3.0.CO;2-R

    Article  CAS  Google Scholar 

  • Efremova A, Regis A, Arsov LJ (1994) electrochemical formation and deposition of polyaniline on electrode surface; in situ raman spectroscopical study. Electrochim Acta 39:839–845

    Article  CAS  Google Scholar 

  • Geniès EM, Lapkowski M (1987) Spectroelectrochemical studies of redox mechanisms in polyaniline films. Evidence of two polaron-bipolaron systems. Synth Met 21:117–121. doi:10.1016/0379-6779(87)90074-9

    Article  Google Scholar 

  • Gribkova OL, Nekrasov AA, Isakova AA, Ivanov VF, Vannikov AV (2006) Specific features characterizing electrochemical synthesis of polyaniline conducted in the presence of poly(2-acrylamido-2-methyl-1-propanesulfonic acid) and the spectroelectrochemical characteristics of the obtained films. Russian J Electrochem 42:1085–1092. doi:10.1134/S1023193506100156

    Article  CAS  Google Scholar 

  • Gribkova OL, Nekrasov AA, Ivanov VF, Zolotorevsky VI, Vannikov AV (2014) Templating effect of polymeric sulfonic acids on electropolymerization of aniline. Electrochim Acta 122:150–158. doi:10.1016/j.electacta.2013.12.025

    Article  CAS  Google Scholar 

  • Guseva MA, Isakova AA, Gribkova OL, Tverskoi VA, Ivanov VF, Vannikov AV, Fedotov YA (2007) Matrix polymerization of aniline in the presence of polyamides containing sulfo acid groups. Polym Sci Ser A 49:4–11. doi:10.1134/s0965545x07010026

    Article  Google Scholar 

  • Inzelt G (2012) Conducting polymers: a new era of electrochemistry, 2nd edn. Springer, Berlin. doi:10.1007/978-3-642-27621-7

  • Ivanov VF, Gribkova OL, Novikov SV, Nekrasov AA, Isakova AA, Vannikov AV, Meshkov GB, Yaminsky IV (2005) Redox heterogeneity in polyaniline films: from molecular to macroscopic scale. Synth Met 152:153–156. doi:10.1016/j.synthmet.2005.07.155

    Article  CAS  Google Scholar 

  • Joo J, Oh EJ, Min G, MacDiarmid AG, Epstein AJ (1995) Evolution of the conducting state of polyaniline from localized to mesoscopic metallic to intrinsic metallic regimes. Synth Met 69:251–254. doi:10.1016/0379-6779(94)02438-5

    Article  CAS  Google Scholar 

  • Kirsh YE, Fedotov YA, Iudina NN, Artemov DYu, Yanul’ NA, Nekrasova TN (1991) On polyelectrolyte properties of sulfo-containing polyamides on the base of iso- and terephthalic acids in aqueous solution. Polym Sci A 33:1127–1134

    CAS  Google Scholar 

  • Komura T, Mori K, Yamaguchi T, Takahashi K (2000) Electrochemical growth and charge-transport properties of polyaniline/poly(styrenesulfonate) composite films. Bull Chem Soc Jpn 73:19–27. doi:10.1246/bcsj.73.19

    Article  CAS  Google Scholar 

  • Kuzmany H, Sariciftci NS (1987) In situ spectro-electrochemical studies of polyaniline. Synth Met 18:353–358. doi:10.1016/0379-6779(87)90904-0

    Article  CAS  Google Scholar 

  • Lapkowski M (1993) Electrochemical synthesis of polyaniline/poly(2-acryl-amido-2-methyl-1-propane-sulfonic acid) composite. Synth Met 55–57:1558–1563. doi:10.1016/0379-6779(93)90284-4

    Article  Google Scholar 

  • Lapkowski M, Berrada K, Quillard S, Louarn G, Lefrant S, Pron A (1995) Electrochemical oxidation of polyaniline in nonaqueous electrolytes: “in situ” Raman spectroscopic studies. Macromolecules 28:1233–1238. doi:10.1021/ma00108a061

    Article  CAS  Google Scholar 

  • Larkin P (2011) Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier, Amsterdam

    Google Scholar 

  • Lin D-S, Chou C-T, Chen Y-W, Kuo K-T, Yang S-M (2006) Electrochemical behaviors of polyaniline–poly(styrene-sulfonic acid) complexes and related films. J Appl Polym Sci 100:4023–4044. doi:10.1002/app.23231

    Article  CAS  Google Scholar 

  • Liu Ch, Zhang J, Shi G, Chen F (2004) Doping level change of polyaniline film during its electrochemical growth process. J Appl Polym Sci 92:171–177. doi:10.1002/app.13706

    Article  CAS  Google Scholar 

  • Louarn G, Lapkowski M, Quillard S, Pron A, Buisson JP, Lefrant S (1996) Vibrational properties of polyanilines isotope effects. J Phys Chem 100:6998–7006. doi:10.1021/jp953387e

    Article  CAS  Google Scholar 

  • Luo J, Jiang S, Liu R, Zhang Y, Liu X (2013) Synthesis of water dispersible polyaniline/poly(styrenesulfonic acid) modified graphene composite and its electrochemical properties. Electrochim Acta 96:103–109. doi:10.1016/j.electacta.2013.02.072

    Article  CAS  Google Scholar 

  • Lyutov V, Georgiev G, Tsakova V (2009) Comparative study on the electrochemical synthesis of polyaniline in the presence of mono- and poly(2-acrylamido-2-methyl-1-propanesulfonic) acid. Thin Solid Films 517:6681–6688. doi:10.1016/j.tsf.2009.05.010

    Article  CAS  Google Scholar 

  • Malinauskas A, Bron M, Holze R (1998) Electrochemical and Raman spectroscopic studies of electrosynthesized copolymers and bilayer structures of polyaniline and poly(o-phenylenediamine). Synth Met 92:127–137. doi:10.1016/S0379-6779(98)80102-1

    Article  CAS  Google Scholar 

  • Mazeikiene R, Statino A, Kuodis Z, Niaura G, Malinauskas A (2006) In situ Raman spectroelectrochemical study of self-doped polyaniline degradation kinetics. Electrochem Commun 8:1082–1086. doi:10.1016/j.elecom.2006.04.017

    Article  CAS  Google Scholar 

  • Mazeikiene R, Tomkute V, Kuodis Z, Niaura G, Malinauskas A (2007) Raman spectroelectrochemical study of polyaniline and sulfonated polyaniline in solutions of different pH. Vib Spectrosc 44:201–208. doi:10.1016/j.vibspec.2006.09.005

    Article  CAS  Google Scholar 

  • Mazeikiene R, Niaura G, Malinauskas A (2010) A comparative Raman spectroelectrochemical study of selected polyaniline derivatives in a pH-neutral solution. Synth Met 160:1060–1064. doi:10.1016/j.synthmet.2010.02.027

    Article  CAS  Google Scholar 

  • Meriga V, Valligatla S, Sundaresan S, Cahill C, Dhanak VR, Chakraborty AK (2015) Optical, electrical, and electrochemical properties of graphene based water soluble polyaniline composites. J Appl Polym Sci 132:42766. doi:10.1002/app.42766

    Article  Google Scholar 

  • Motheo AJ, Santos JR Jr, Venancio EC, Mattoso LHC (1998) Influence of different types of acidic dopant on the electrodeposition and properties of polyaniline films. Polymer 39:6977–6982. doi:10.1016/S0032-3861(98)00086-X

    Article  CAS  Google Scholar 

  • Naudin E, Gouerec P, Belanger D (1998) Electrochemical preparation and characterization in non-aqueous electrolyte of polyaniline electrochemically prepared from an anilinium salt. J Electroanal Chem 459:1–7. doi:10.1016/S0022-0728(98)00234-4

    Article  CAS  Google Scholar 

  • Nekrasov AA, Ivanov VF, Gribkova OL, Vannikov AV (2004) On the role played by dimers of radical cations in the process of electrochemical oxidation-reduction of polyaniline: the data that were obtained using the method of cyclic voltabsorptometry in the presence of counteranions of a diverse nature. Russ J Electrochem 40:249–258. doi:10.1023/B:RUEL.0000019661.08569.28

    Article  CAS  Google Scholar 

  • Nekrasov AA, Gribkova OL, Eremina TV, Isakova AA, Ivanov VF, Tverskoj VA, Vannikov AV (2008) Electrochemical synthesis of polyaniline in the presence of poly(amidosulfonic acid)s with different rigidity of polymer backbone and characterization of the films obtained. Electrochim Acta 53:3789–3797. doi:10.1016/j.electacta.2007.08.060

    Article  CAS  Google Scholar 

  • Niaura G, Mažeikiene R, Malinauskas A (2004) Structural changes in conducting form of polyaniline upon ring sulfonation as deduced by near infrared resonance Raman spectroscopy. Synth Met 145:105–112. doi:10.1016/j.synthmet.2004.04.010

    Article  CAS  Google Scholar 

  • Salavagione HJ, Acevedo DF, Miras MC, Motheo AJ, Barbero CA (2004) Comparative study of 2-amino and 3-aminobenzoic acid copolymerization with aniline synthesis and copolymer properties. J Polym Sci Part A Polym Chem 42:5587–5599. doi:10.1002/pola.20409

    Article  CAS  Google Scholar 

  • Sedenkova I, Trchova M, Stejskal J (2008) Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water—FTIR and Raman spectroscopic studies. Polym Degrad Stab 93:2147–2157. doi:10.1016/j.polymdegradstab.2008.08.007

    Article  CAS  Google Scholar 

  • Shah A-HA, Holze R (2008) Spectroelectrochemistry of two-layered composites of polyaniline and poly(o-aminophenol). Electrochim Acta 53:4642–4653. doi:10.1016/j.electacta.2008.01.076

    Article  CAS  Google Scholar 

  • Shreepathi S, Holze R (2005) Spectroelectrochemical investigations of soluble polyaniline synthesized via new inverse emulsion pathway. Chem Mater 17:4078–4085. doi:10.1021/cm050117s

    Article  CAS  Google Scholar 

  • Tagowska M, Pałys B, Jackowska K (2004) Polyaniline nanotubules—anion effect on conformation and oxidation state of polyaniline studied by Raman spectroscopy. Synth Met 142:223–229. doi:10.1016/j.synthmet.2003.09.001

    Article  CAS  Google Scholar 

  • Wang X, Bernard MC, Deslouis C, Joiret S, Rousseau P (2011) Kinetic reactions in thin polyaniline films revisited through Raman–impedance dynamic coupling. Electrochim Acta 56:3485–3493. doi:10.1016/j.electacta.2010.12.020

    Article  CAS  Google Scholar 

  • Wilson EB Jr (1934) The normal modes and frequencies of vibration of the regular plane hexagon model of the benzene molecule. Phys Rev 45:706–714. doi:10.1103/PhysRev.45.706

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Grant No. 15-13-00170). O. Iakobson is grateful to the Grant Council of the President of the Russian Federation for financial support (SP-2994.2015.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Nekrasov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekrasov, A.A., Gribkova, O.L., Iakobson, O.D. et al. Raman spectroelectrochemical study of electrodeposited polyaniline doped with polymeric sulfonic acids of different structures. Chem. Pap. 71, 449–458 (2017). https://doi.org/10.1007/s11696-016-0087-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0087-2

Keywords

Navigation