Skip to main content
Log in

Luminescent Eu-doped GdVO4 nanocrystals as optical markers for anti-counterfeiting purposes

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Luminescent Eu:GdVO4 nanoparticles, with an average size of 60 nm, were deposited first on monocrystalline silicon wafers, then on four different natural stone materials, by a spray-coating technique and a silica layer was subsequently deposited by atmospheric pressure plasma jet to protect the luminescent layer and improve its adhesion to the substrate. The luminescent films were characterized by photoluminescence excitation and emission, while the surface morphology was examined by FEG-SEM microscopy and spectroscopic ellipsometry to determine the coating thickness. The optical appearance of the coatings was also evaluated by colorimetric measurements and the efficacy of the fixing action of the silica layer was estimated by PL measurements performed before and after a Scotch™ tape peeling test. The proposed methodology, easily applied on the surface of stone supports, has led to the realization of a luminescent film displaying good mechanical properties, transparent and undetectable in the presence of visible light, but easily activated by UV light source, indicating that the Eu:GdVO4 nanophosphors could be used as luminescent nanotags for a reliable anti-counterfeiting technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andres J, Hersch RD, Moser J-E, Chauvin A-S (2014) A new anti-counterfeiting feature relying on invisible luminescent full color images printed with lanthanide-based inks. Adv Funct Mater 24:5029–5036. doi:10.1002/adfm.201400298

    Article  CAS  Google Scholar 

  • Back M, Boffelli M, Massari A, Marin R, Enrichi F, Riello P (2013) Energy transfer between Tb3+ and Eu3+ in co-doped Y2O3 nanocrystals prepared by Pechini method. J Nanoparticles Res 15:1753. doi:10.1007/s11051-013-1753-8

    Article  Google Scholar 

  • Beaurepaire E, Buissette V, Sauviat M, Giaume D, Lahlil K, Mercuri A, Casanova D, Huignard A, Martin J, Gacoin T, Boilot J-P, Alexandrou A (2004) Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level. Nano Lett 4:2079–2083. doi:10.1021/nl049105g

    Article  CAS  Google Scholar 

  • Beggio A, Fantin M, Scopece P, Surpi A, Patelli A, Benedetti A, Cristofori D, Enrichi F (2015) Incorporation of Eu-Tb codoped nanophosphors in silica-based coatings assisted by atmospheric pressure plasma jet technology. Thin Solid Films 578:38–44. doi:10.1016/j.tsf.2015.02.014

    Article  CAS  Google Scholar 

  • Blumenthal T, Meruga J, May PS, Kellar J, Cross W, Ankireddy K, Vunnam S, Luu QN (2012) Patterned direct-write and screen-printing of NIR-to-visible upconverting inks for security applications. Nanotechnology 23:185305–185312. doi:10.1088/0957-4484/23/18/185305

    Article  Google Scholar 

  • Casanova D, Giaume D, Moreau M, Martin JL, Gacoin T, Boilot J-P, Alexandrou A (2007) Counting the number of proteins coupled to single nanoparticles. J Am Chem Soc 129:12592–12593. doi:10.1021/ja0731975

    Article  CAS  Google Scholar 

  • Creran B, Yan B, Moyano DF, Gilbert MM, Vachet RW, Rotello VM (2012) Laser desorption ionization mass spectrometric imaging of mass barcoded gold nanoparticles for security applications. Chem Commun 48:4543–4545. doi:10.1039/C2CC30499F

    Article  CAS  Google Scholar 

  • Dhahri A, Horchani-Naifer K, Benedetti A, Enrichi F, Ferid M (2012) Combustion synthesis and photoluminescence properties of LaAlO3 nanophosphors doped with Yb3+ ions. Opt Mater 34:1742–1746. doi:10.1016/j.optmat.2012.04.003

    Article  CAS  Google Scholar 

  • Eberlin LS, Haddad R, Neto RCS, Cosso RG, Maia DRJ, Maldaner AO, Zacca JJ, Sanvido GB, Romao W, Vaz BG, Ifa DR, Dill A, Cooks RG, Eberlin MN (2010) Instantaneous chemical profiles of banknotes by ambient mass spectrometry. Analyst 135:2533–2539. doi:10.1039/c0an00243g

    Article  CAS  Google Scholar 

  • Enrichi F, Riccò R, Meneghello A, Pierobon R, Cretaio E, Marinello F, Schiavuta P, Parma A, Riello P, Benedetti A (2010) Investigation of luminescent dye-doped or rare-earth-doped monodisperse silica nanospheres for DNA microarray labelling. Opt Mater 32:1652–1658. doi:10.1016/j.optmat.2010.04.026

    Article  CAS  Google Scholar 

  • Escudero A, Moretti E, Ocaña M (2014) Synthesis and luminescence of uniform europium-doped bismuth fluoride and bismuth oxyfluoride particles with different morphologies. Cryst Eng Comm 16:3274–3283. doi:10.1039/C3CE42462F

    Article  CAS  Google Scholar 

  • Escudero A, Carrillo-Carrion C, Zyuzin MV, Ashraf S, Hartmann R, Nunez NO, Ocana M, Parak WJ (2016) Synthesis and functionalization of monodisperse near-ultraviolet and visible excitable multifunctional Eu3+, Bi3+:REVO4 nanophosphors for bioimaging and biosensing applications. Nanoscale 8:12221–12236. doi:10.1039/C6NR03369E

    Article  CAS  Google Scholar 

  • Głuchowski P, Stręk W, Lastusaari M, Hölsä J (2015) Optically stimulated persistent luminescence of europium-doped LaAlO3 nanocrystals. Phys Chem Chem Phys 17:17246–17252. doi:10.1039/C5CP00234F

    Article  Google Scholar 

  • Gupta BK, Haranath D, Saini S, Singh VN, Shanker V (2010) Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications. Nanotechnology 21:055607. doi:10.1088/0957-4484/21/5/055607

    Article  Google Scholar 

  • Hunt RWG (2004) The reproduction of colour, 6th edn. Wiley-Interscience Ed., New York. ISBN 978-0-470-02425-6

    Book  Google Scholar 

  • Kim M-J, Huh Y-D (2011) Preparation and photoluminescence of GdVO4: Eu nanophosphors for flexible and transparent displays. Bull Korean Chem Soc 32:4454–4457. doi:10.5012/bkcs.2011.32.12.4454

    Article  CAS  Google Scholar 

  • Kim WJ, Nyk M, Prasad PN (2009) Color-coded multilayer photopatterned microstructures using lanthanide (III) ion co-doped NaYF4 nanoparticles with upconversion luminescence for possible applications in security. Nanotechnology 20:185301–185307. doi:10.1088/0957-4484/20/18/185301

    Article  Google Scholar 

  • Kim SY, Won Y-H, Jang HS (2015) A strategy to enhance Eu3+ emission from LiYF4: Eu nanophosphors and green-to-orange multicolor tunable, transparent nanophosphor-polymer composites. Sci Rep 5:7866. doi:10.1038/srep07866

    Article  CAS  Google Scholar 

  • Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110:2620–2640. doi:10.1021/cr900263j

    Article  CAS  Google Scholar 

  • Liu G, Jacquier B (2005) Spectroscopic properties of rare earths in optical materials. Springer, Berlin

    Google Scholar 

  • Liu YS, Tu DT, Zhu HM, Chen XY (2013) Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev 42:6924–6958. doi:10.1039/C3CS60060B

    Article  CAS  Google Scholar 

  • Llevot A, Astruc D (2012) Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem Soc Rev 41:242–257. doi:10.1039/c1cs15080d

    Article  CAS  Google Scholar 

  • Marcus RT (1998) The measurement of color. In: Nassau K (ed) Color for science, art and technology. Elsevier, Amsterdam, pp 31–96

    Chapter  Google Scholar 

  • Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544. doi:10.1126/science.1104274

    Article  CAS  Google Scholar 

  • Montgomery CP, Murray BS, New EJ, Pal R, Parker D (2009) Cell-penetrating metal complex optical probes: targeted and responsive systems based on lanthanide luminescence. Acc Chem Res 42:925–937. doi:10.1021/ar800174z

    Article  CAS  Google Scholar 

  • Moretti E, Talon A, Storaro L, Le Donne A, Binetti S, Benedetti A, Polizzi S (2014) Concentration quenching and photostability in Eu(dbm)3phen embedded in mesoporous silica nanoparticles. J Lumin 146:178–185. doi:10.1016/j.jlumin.2013.09.059

    Article  CAS  Google Scholar 

  • Moretti E, Pizzol G, Fantin M, Enrichi F, Scopece P, Nuñez N, Ocaña M, Benedetti A, Polizzi S (2016) Deposition of silica protected luminescent layers of Eu:GdVO4 nanoparticles assisted by atmospheric pressure plasma jet. Thin Solid Films 598:88–94. doi:10.1016/j.tsf.2015.11.061

    Article  CAS  Google Scholar 

  • Mottana A, Crespi R, Liborio G (2011) Minerali e rocce. Mondadori Ed., Milan

    Google Scholar 

  • Nassau K (1993) The physics and chemistry of color, the fifteen causes of color. Wiley, New York

    Google Scholar 

  • Nuñez NO, Rivera S, Alcantara D, de la Fuente JM, García-Sevillano J, Ocaña M (2013) Surface modified Eu:GdVO4 nanocrystals for optical and MRI imaging. Dalton Trans 42:10725–10734. doi:10.1039/C3DT50676B

    Article  Google Scholar 

  • Pizzi A, Mittal KL (2003) Handbook of adhesive technology, 2nd edn. Marcel Dekker Inc., New York. ISBN 0-8247-0986-1

    Google Scholar 

  • Prime EL, Solomon DH (2010) Australia’s plastic banknotes: fighting counterfeit currency. Angew Chem Int Ed 49:3726–3736. doi:10.1002/anie.200904538

    Article  CAS  Google Scholar 

  • Schläpfer K (1993) Farbmetrik in der Reproduktionstechnik und im Mehrfarbendruck, 2nd edn. UGRA, St. Gallen

    Google Scholar 

  • Scopece P, Viaro A, Sulcis R, Kulyk I, Patelli A, Guglielmi M (2009) SiO x -based gas barrier coatings for polymer substrates by atmospheric pressure plasma jet deposition. Plasma Process Polym 6–1:S705–S710. doi:10.1002/ppap.200931707

    Article  Google Scholar 

  • Shen J, Sun L-D, Zhu J-D, Wei L-H, Sun H-F, Yan C-H (2010) Biocompatible bright YVO4: Eu nanoparticles as versatile optical bioprobes. Adv Funct Mater 20:3708–3714. doi:10.1002/adfm.201001264

    Article  CAS  Google Scholar 

  • Sojka B, Podhorodecki A, Banski M, Misiewicz J, Drobczynski S, Dumych T, Lutsyk MM, Lutsyk A, Bilyy R (2016) β-NaGdF4:Eu3+ nanocrystal markers for melanoma tumor imaging. RSC Adv 6:57854–57862. doi:10.1039/C6RA10351K

    Article  CAS  Google Scholar 

  • Stouwdam JW, Raudsepp M, van Veggel FCJM (2005) Colloidal nanoparticles of Ln3+ doped LaVO4: energy transfer to visible and near infrared-emitting lanthanide ions. Langmuir 21:7003–7008. doi:10.1021/la0505162

    Article  CAS  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  • Wyszecki G, Stiles WS (2000) Color science: concepts and methods, quantitative data and formulae. Wiley-Interscience Ed, New York. ISBN 0471399183

    Google Scholar 

  • Yap AU, Sim CP, Loh WL, Teo JH (1999) Human-eye versus computerized color matching. Oper Dent 24:358–363

    CAS  Google Scholar 

Download references

Acknowledgements

Ca' Foscari University of Venice and Consortium INSTM are acknowledged for financial support. Dr. Alessandro Patelli, coordinator of the PANNA European Project (Grant Agreement No 282998) is acknowledged for having inspired the identification marker applicability. Dr. Eleonora Balliana is gratefully acknowledged for providing stone material samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Moretti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moretti, E., Pizzol, G., Fantin, M. et al. Luminescent Eu-doped GdVO4 nanocrystals as optical markers for anti-counterfeiting purposes. Chem. Pap. 71, 149–159 (2017). https://doi.org/10.1007/s11696-016-0081-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0081-8

Keywords

Navigation