Skip to main content

Advertisement

Log in

An artificial [FeFe]-hydrogenase mimic with organic chromophore-linked thiolate bridges for the photochemical production of hydrogen

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

An artificial [FeFe]-hydrogenase ([FeFe]-H2ase) mimic 3II, consisting of dual organic chromophores covalently assembled to the [Fe2S2] active site, was constructed for light-driven hydrogen evolution. The structural conformation of synthetic photocatalyst was characterized crystallographically and spectroscopically. The photo-induced intramolecular electron transfer was evidently demonstrated by the combination of electrochemical, steady-state, and transient absorption spectroscopic studies. Finally, a remarkable activity was obtained in the present photocatalytic system, indicating the covalent incorporation of photosensitizer and catalytic center as a promising strategy to construct inexpensive, easily accessible [FeFe]-H2ase model photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams MWW, Stiefel EI (1998) Biological hydrogen production: not so elementary. Science 282(5395):1842–1843. doi:10.1126/science.282.5395.1842

    Article  CAS  Google Scholar 

  • Artero V, Berggren G, Atta M, Caserta G, Roy S, Pecqueur L, Fontecave M (2015) From enzyme maturation to synthetic chemistry: the case of hydrogenases. Acc Chem Res 48(8):2380–2387. doi:10.1021/acs.accounts.5b00157

    Article  CAS  Google Scholar 

  • Baskaran D, Mays JW, Zhang XP, Bratcher MS (2005) Carbon nanotubes with covalently linked porphyrin antennae: photoinduced electron transfer. J Am Chem Soc 127(19):6916–6917. doi:10.1021/ja0508222

    Article  CAS  Google Scholar 

  • Bogan LE, Lesch DA, Rauchfuss TB (1983) Synthesis of heterometallic cluster compounds from Fe3(μ3-Te)2(CO)9 and comparisons with analogous sulfide clusters. J Organomet Chem 250(1):429–438. doi:10.1016/0022-328X(83)85067-0

    Article  CAS  Google Scholar 

  • Borg SJ, Bergamini T, Best SP, Razavet M, Liu X, Pickett CJ (2004) Electron transfer at a dithiolate-bridged diiron assembly: electrocatalytic hydrogen evolution. J Am Chem Soc 126(51):16988–16999. doi:10.1021/ja045281f

    Article  CAS  Google Scholar 

  • Cammack R (1999) Bioinorganic chemistry: hydrogenase sophistication. Nature 397:214–215. doi:10.1038/16601

    Article  CAS  Google Scholar 

  • Capon JF, Gloaguen F, Petillon FY, Schollhammer P, Talarmin J (2009) Electron and proton transfers at diiron dithiolate sites relevant to the catalysis of proton reduction by the [FeFe]-hydrogenases. Coord Chem Rev 253(9–10):1476–1494. doi:10.1016/j.ccr.2008.10.020

    Article  CAS  Google Scholar 

  • Chong D, Georgakaki IP, Mejia-Rodriguez R, Sanabria-Chinchilla J, Soriaga MP, Darensbourg MY (2003) Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships. Dalton Trans 32(21):4158–4163. doi:10.1039/B304283A

    Article  Google Scholar 

  • Crouthers DJ, Ding S, Denny JA, Bethel RD, Hsieh CH, Hall MB, Darensbourg MY (2015) A Reduced 2Fe2S Cluster Probe Of Sulfur–Hydrogen Versus Sulfur–Gold Interactions. Angew Chem Int Ed 54(38):11102–11106. doi:10.1002/anie.201504574

    Article  CAS  Google Scholar 

  • Darensbourg MY, Lyon EJ, Zhao X, Georgakaki IP (2003) The organometallic active site of [Fe] hydrogenase: Models and entatic states. Proc Natl Acad Sci USA 100(7):3683–3688. doi:10.1073/pnas.0536955100

    Article  CAS  Google Scholar 

  • Denny JA, Darensbourg MY (2015) Metallodithiolates as ligands in coordination, bioinorganic, and organometallic chemistry. Chem Rev 115(11):5248–5273. doi:10.1021/cr500659u

    Article  CAS  Google Scholar 

  • Eilers G, Schwartz L, Stein M, Zampella G, De Gioia L, Ott S, Lomoth R (2007) Ligand versus metal protonation of an iron hydrogenase active site mimic. Chem Eur J 13(25):7075–7084. doi:10.1002/chem.200700019

    Article  CAS  Google Scholar 

  • Felton GAN, Mebi CA, Petro BJ, Vannucci AK, Evans DH, Glass RS, Lichtenberger DL (2009) Review of electrochemical studies of complexes containing the Fe2S2 core characteristic of [FeFe]-hydrogenases including catalysis by these complexes of the reduction of acids to form dihydrogen. J Organomet Chem 694(17):2681–2699. doi:10.1016/j.jorganchem.2009.03.017

    Article  CAS  Google Scholar 

  • Gao S, Huang S, Duan Q, Hou JH, Jiang DY, Liang QC, Zhao JX (2014) Iron–iron hydrogenase active subunit covalently linking to organic chromophore for light-driven hydrogen evolution. Int J Hydrog Energy 39(20):10434–10444. doi:10.1016/j.ijhydene.2014.05.003

    Article  CAS  Google Scholar 

  • Georgakaki IP, Thomson LM, Lyon EJ, Hall MB, Darensbourg MY (2003) Fundamental properties of small molecule models of Fe-only hydrogenase: computations relative to the definition of an entatic state in the active site. Coord Chem Rev 238–239:255–266. doi:10.1016/S0010-8545(02)00326-0

    Article  Google Scholar 

  • Gloaguen F, Rauchfuss TB (2009) Small molecule mimics of hydrogenases: hydrides and redox. Chem Soc Rev 38:100–108. doi:10.1039/B801796B

    Article  CAS  Google Scholar 

  • Goy R, Apfel U, Elleouet C, Escudero D, Elstner M, Görls H, Talarmin J, Schollhammer P, González L, Weigand W (2013) A silicon-heteroaromatic system as photosensitizer for light-driven hydrogen production by hydrogenase mimics. Eur J Inorg Chem 2013(25):4466–4472. doi:10.1002/ejic.201300537

    Article  CAS  Google Scholar 

  • Heinekey DM (2009) Hydrogenase enzymes: recent structural studies and active site models. J Organomet Chem 694(17):2671–2680. doi:10.1016/j.jorganchem.2009.03.047

    Article  CAS  Google Scholar 

  • Iijima T, Momotake A, Shinohara Y, Sato T, Nishimura Y, Arai T (2010) Excited-state intramolecular proton transfer of naphthalene-fused 2-(2′-Hydroxyaryl)benzazole family. J Phys Chem A 114(4):1603–1609. doi:10.1021/jp904370t

    Article  CAS  Google Scholar 

  • King RB (1962) Organosulfur derivatives of metal carbonyls. i. the isolation of two isomeric products in the reaction of triiron dodecacarbonyl with dimethyl disulfide. J Am Chem Soc 84(12):2460. doi:10.1021/ja00871a045

    Article  CAS  Google Scholar 

  • Kluwer AM, Kapre R, Hartl F, Lutz M, Spek AL, Brouwer AM, van Leeuwen PWNM, Reek JNH (2009) Self-assembled biomimetic [2Fe2S]-hydrogenase based photocatalyst for molecular hydrogen evolution. Proc Natl Acad Sci USA 106(26):10460–10465. doi:10.1073/pnas.0809666106

    Article  CAS  Google Scholar 

  • Lomoth R, Ott S (2009) Introducing a dark reaction to photochemistry: photocatalytic hydrogen from [FeFe] hydrogenase active site model complexes. Dalton Trans 38:9952–9959. doi:10.1039/B911129H

    Article  Google Scholar 

  • Lubitz W, Reijerse E, van Gastel M (2007) [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem Rev 107(10):4331–4365. doi:10.1021/cr050186q

    Article  CAS  Google Scholar 

  • Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Hydrogenases. Chem Rev 114(8):4081–4148. doi:10.1021/cr4005814

    Article  CAS  Google Scholar 

  • Na Y, Pan JX, Wang M, Sun LC (2007) Intermolecular electron transfer from photogenerated Ru(bpy)3+ to [2Fe2S] model complexes of the iron-only hydrogenase active site. Inorg Chem 46(10):3813–3815. doi:10.1021/ic070234k

    Article  CAS  Google Scholar 

  • Nicolet Y, Piras C, Legrand P, Hatchikian EC, Fontecilla-Camps JC (1999) Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7(1):13–23. doi:10.1016/S0969-2126(99)80005-7

    Article  CAS  Google Scholar 

  • Nicolet Y, Lacey AL, Vernéde X, Fernandez VM, Hatchikian EC, Fontecilla-Camps JC (2001) Crystallographic and FTIR Spectroscopic Evidence of Changes in Fe Coordination upon Reduction of the Active Site of the Fe-only Hydrogenase from Desulfovibrio desulfuricans. J Am Chem Soc 123(8):1596–1601. doi:10.1021/ja0020963

    Article  CAS  Google Scholar 

  • Ogo S, Ichikawa K, Kishima T, Matsumoto T, Nakai H, Kusaka K, Ohhara T (2013) A functional [NiFe] hydrogenase mimic that catalyzes electron and hydride transfer from H2. Science 339(6120):682–684. doi:10.1126/science.1231345

    Article  CAS  Google Scholar 

  • Palmer PJ, Hall G, Trigg RB, Warrington JV (1971) Antimicrobials. 1. Benzothiazolylbenzylamines. J Med Chem 14(12):1223–1225. doi:10.1021/jm00294a024

    Article  CAS  Google Scholar 

  • Rauchfuss TB (2015) Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Acc Chem Res 48(7):2107–2116. doi:10.1021/acs.accounts.5b00177

    Article  CAS  Google Scholar 

  • Rehm D, Weller A (1970) Kinetics of fluorescence quenching by electron and H-atom transfer. Isr J Chem 8(2):259–271. doi:10.1002/ijch.197000029

    Article  CAS  Google Scholar 

  • Seyferth D, Henderson RS (1981) Di-μ-thiolbis(tricarbonyliron), (μ-HS)2Fe2(CO)6: an inorganic mimic of organic thiols. J Organomet Chem 218(2):C34–C36. doi:10.1016/S0022-328X(00)86113-6

    Article  CAS  Google Scholar 

  • Seyferth D, Womack GB, Henderson RS, Cowie M, Hames BW (1986) Michael-type addition reactions of bis(μ-mercapto)bis(tricarbonyliron): proximity-induced formation of bidentate organosulfur ligands. Organometallics 5(8):1568–1575. doi:10.1021/om00139a010

    Article  CAS  Google Scholar 

  • Sheldrick GM (1996) SADABS Absorption Correction Program. University of Göffingen, Göffingen

    Google Scholar 

  • Sheldrick GM (1997) SHELXTL 97 Program for the Refinement of Crystal Structure. University of Göffingen, Göffingen

    Google Scholar 

  • Siemens Energy & Automation Inc, Inc Automation (1996) Software packages SMART and SAINT. Madison, Wisconsin

    Google Scholar 

  • Tard C, Pickett CJ (2009) Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem Rev 109(6):2245–2274. doi:10.1021/cr800542q

    Article  CAS  Google Scholar 

  • Tard C, Liu XM, Ibrahim SK, Bruschi M, De Gioia L, Davies SC, Yang X, Wang LS, Sawers G, Pickett CJ (2005) Synthesis of the H-cluster framework of iron-only hydrogenase. Nature 433:610–613. doi:10.1038/nature03298

    Article  CAS  Google Scholar 

  • Wang WG, Wang F, Wang HY, Si G, Tung CH, Wu LZ (2010) Photocatalytic hydrogen evolution by [FeFe] hydrogenase mimics in homogeneous solution. Chem Asian J 5(8):1796–1803. doi:10.1002/asia.201000087

    Article  CAS  Google Scholar 

  • Wang F, Wang WG, Wang HY, Si G, Tung CH, Wu LZ (2012) Artificial photosynthetic systems based on [FeFe]-hydrogenase mimics: the road to high efficiency for light-driven hydrogen evolution. ACS Catal 2(3):407–416. doi:10.1021/cs200458b

    Article  CAS  Google Scholar 

  • Wang M, Han K, Zhang S, Sun LC (2015) Integration of organometallic complexes with semiconductors and other nanomaterials for photocatalytic H2 production. Coord Chem Rev 287:1–14. doi:10.1016/j.ccr.2014.12.005

    Article  CAS  Google Scholar 

  • Wolpher H, Borgström M, Hammarström L, Bergquist J, Sundström V, Styring S, Sun L, Åkermark B (2003) Synthesis and properties of an iron hydrogenase active site model linked to a ruthenium tris-bipyridine photosensitizer. Inorg Chem Commun 6(8):989–991. doi:10.1016/S1387-7003(03)00140-0

    Article  CAS  Google Scholar 

  • Wombwell C, Caputo CA, Reisner E (2015) [NiFeSe]-hydrogenase chemistry. Acc Chem Res 48(11):2858–2865. doi:10.1021/acs.accounts.5b00326

    Article  CAS  Google Scholar 

  • Wu LZ, Chen B, Li ZJ, Tung CH (2014) Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly. Acc Chem Res 47(7):2177–2185. doi:10.1021/ar500140r

    Article  CAS  Google Scholar 

  • Xu T, Chen D, Hu X (2015) Hydrogen-activating models of hydrogenases. Coord Chem Rev 303:32–41. doi:10.1016/j.ccr.2015.05.007

    Article  CAS  Google Scholar 

  • Yang P, Zhao JZ, Wu WH, Yu XR, Liu YF (2012) Accessing the longlived triplet excited states in bodipy-conjugated 2-(2-Hydroxyphenyl) benzothiazole/benzoxazoles and applications as organic triplet photosensitizers for photooxidations. J Org Chem 77(14):6166–6178. doi:10.1021/jo300943t

    Article  CAS  Google Scholar 

  • Zhong W, Zampella G, Li Z, De Gioia L, Liu Y, Zeng X, Luo Q, Liu XM (2008) Synthesis, characterisation of two hexa-iron clusters with Fe2S2(CO)x (x = 5 or 6) fragments and investigation into their inter-conversion. J Organomet Chem 693(25):3751–3759. doi:10.1016/j.jorganchem.2008.09.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (Nos. 21201022, 61106050, and 61473132), The Specialized Research Fund for the Doctoral Program of Higher Education (New Teachers, No. 20122216120001), and the Scientific and Technological Development Project of Jilin Province (No. 20150311086YY) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Zhang, WY., Duan, Q. et al. An artificial [FeFe]-hydrogenase mimic with organic chromophore-linked thiolate bridges for the photochemical production of hydrogen. Chem. Pap. 71, 617–625 (2017). https://doi.org/10.1007/s11696-016-0049-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0049-8

Keywords

Navigation