Skip to main content
Log in

Surgical Weight Loss: Impact on Energy Expenditure

  • Review Article
  • Published:
Obesity Surgery Aims and scope Submit manuscript

An Erratum to this article was published on 16 February 2013

Abstract

Diet-induced weight loss is often limited in its magnitude and often of short duration, followed by weight regain. On the contrary, bariatric surgery now commonly used in the treatment of severe obesity favors large and sustained weight loss, with resolution or improvement of most obesity-associated comorbidities. The mechanisms of sustained weight loss are not well understood. Whether changes in the various components of energy expenditure favor weight maintenance after bariatric surgery is unclear. While the impact of diet-induced weight loss on energy expenditure has been widely studied and reviewed, the impact of bariatric surgery on total energy expenditure, resting energy expenditure, and diet-induced thermogenesis remains unclear. Here, we review data on energy expenditure after bariatric surgery from animal and human studies. Bariatric surgery results in decreased total energy expenditure, mainly due to reduced resting energy expenditure and explained by a decreased in both fat-free mass and fat mass. Limited data suggest increased diet-induced thermogenesis after gastric bypass, a surgery that results in gut anatomical changes and modified the digestion processes. Physical activity and sustained intakes of dietary protein may be the best strategies available to increase non-resting and then total energy expenditure, as well as to prevent the decline in lean mass and resting energy expenditure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sjostrom L, Lindroos AK, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.

    Article  PubMed  Google Scholar 

  2. Sjostrom L, Narbro K, Sjostrom CD, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357:741–52.

    Article  PubMed  Google Scholar 

  3. Adams TD, Gress RE, Smith SC, et al. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007;357:753–61.

    Article  PubMed  CAS  Google Scholar 

  4. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122:248–56. e245.

    Article  PubMed  Google Scholar 

  5. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2008. Obes Surg. 2009;19:1605–11.

    Article  PubMed  Google Scholar 

  6. Pories WJ. Bariatric surgery: risks and rewards. J Clin Endocrinol Metab. 2008;93:S89–96.

    Article  PubMed  CAS  Google Scholar 

  7. Greenway FL. Surgery for obesity. Endocrinol Metab Clin North Am. 1996;25:1005–27.

    Article  PubMed  CAS  Google Scholar 

  8. Borg CM, le Roux CW, Ghatei MA, et al. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93:210–5.

    Article  PubMed  CAS  Google Scholar 

  9. Olbers T, Bjorkman S, Lindroos A, et al. Body composition, dietary intake, and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg. 2006;244:715–22.

    Article  PubMed  Google Scholar 

  10. Scruggs DM, Buffington C, Cowan Jr GS. Taste acuity of the morbidly obese before and after gastric bypass surgery. Obes Surg. 1994;4:24–8.

    Article  PubMed  Google Scholar 

  11. Burge JC, Schaumburg JZ, Choban PS, et al. Changes in patients’ taste acuity after Roux-en-Y gastric bypass for clinically severe obesity. J Am Diet Assoc. 1995;95:666–70.

    Article  PubMed  CAS  Google Scholar 

  12. Tichansky DS, Boughter Jr JD, Madan AK. Taste change after laparoscopic Roux-en-Y gastric bypass and laparoscopic adjustable gastric banding. Surg Obes Relat Dis. 2006;2:440–4.

    Article  PubMed  Google Scholar 

  13. Nyhlin H, Brydon G, Danielsson A, et al. Bile acid malabsorption after intestinal bypass surgery for obesity. A comparison between jejunoileal shunt and biliointestinal bypass. Int J Obes. 1990;14:47–55.

    PubMed  CAS  Google Scholar 

  14. Anonymous. The SBU on overweight and obesity: Huge increase of overweight-related diseases. Lakartidningen. 2002; 99:3188–92

  15. Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. N Engl J Med. 1995;332:621–8.

    Article  PubMed  CAS  Google Scholar 

  16. Weigle DS, Sande KJ, Iverius PH, et al. Weight loss leads to a marked decrease in nonresting energy expenditure in ambulatory human subjects. Metabolism. 1988;37:930–6.

    Article  PubMed  CAS  Google Scholar 

  17. Bray GA, Smith SR, Dejonge L, et al. Effect of diet composition on energy expenditure during weight loss: the POUNDS LOST Study. Int J Obes (Lond). 2011;36:448–55.

    Article  Google Scholar 

  18. Rosenbaum M, Hirsch J, Gallagher DA, et al. Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr. 2008;88:906–12.

    PubMed  CAS  Google Scholar 

  19. le Roux CW, Aylwin SJ, Batterham RL, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243:108–14.

    Article  PubMed  Google Scholar 

  20. Bueter M, Lowenstein C, Olbers T, et al. Gastric bypass increases energy expenditure in rats. Gastroenterology. 2010;138:1845–53.

    Article  PubMed  Google Scholar 

  21. Stylopoulos N, Hoppin AG, Kaplan LM. Roux-en-Y gastric bypass enhances energy expenditure and extends lifespan in diet-induced obese rats. Obesity Silver Spring. 2009;17:1839–47.

    Article  PubMed  Google Scholar 

  22. Tamboli RA, Hossain HA, Marks PA, et al. Body composition and energy metabolism following Roux-en-Y gastric bypass surgery. Obesity Silver Spring. 2010;18:1718–24.

    Article  PubMed  CAS  Google Scholar 

  23. Das SK, Roberts SB, McCrory MA, et al. Long-term changes in energy expenditure and body composition after massive weight loss induced by gastric bypass surgery. Am J Clin Nutr. 2003;78:22–30.

    PubMed  CAS  Google Scholar 

  24. van Gemert WG, Westerterp KR, van Acker BA, et al. Energy, substrate and protein metabolism in morbid obesity before, during and after massive weight loss. Int J Obes Rel Metab Disord. 2000;24:711–8.

    Article  Google Scholar 

  25. Ravussin E. SBA: energy metabolism. In: Stunkard AJ, editor. Obesity theory and therapy. New York: Raven; 1993.

    Google Scholar 

  26. Weigle DS, Brunzell JD. Assessment of energy expenditure in ambulatory reduced-obese subjects by the techniques of weight stabilization and exogenous weight replacement. Int J Obes. 1990;14 Suppl 1:69–77. discussion 77–81.

    PubMed  Google Scholar 

  27. Peyrot N, Morin JB, Thivel D, et al. Mechanical work and metabolic cost of walking after weight loss in obese adolescents. Med Sci Sports Exerc. 2010;42:1914–22.

    Article  PubMed  Google Scholar 

  28. Jacobi D, Ciangura C, Couet C, et al. Physical activity and weight loss following bariatric surgery. Obes Rev. 2011;12:366–77.

    Article  PubMed  CAS  Google Scholar 

  29. Wang X, You T, Lenchik L, et al. Resting energy expenditure changes with weight loss: racial differences. Obesity Silver Spring. 2010;18:86–91.

    Article  PubMed  Google Scholar 

  30. Foster GD, Wadden TA, Swain RM, et al. Changes in resting energy expenditure after weight loss in obese African American and White women. Am J Clin Nutr. 1999;69:13–7.

    PubMed  CAS  Google Scholar 

  31. van Gemert WG, Westerterp KR, Greve JW, et al. Reduction of sleeping metabolic rate after vertical banded gastroplasty. Int J Obes Relat Metab Disord. 1998;22:343–8.

    Article  PubMed  Google Scholar 

  32. Busetto E, Hrdy J. Compensation of aberration of inclined X-ray monochromators. J Synchrotron Radiat. 1995;2:288–91.

    Article  PubMed  CAS  Google Scholar 

  33. Buscemi S, Caimi G, Verga S. Resting metabolic rate and postabsorptive substrate oxidation in morbidly obese subjects before and after massive weight loss. Int J Obes Relat Metab Disord. 1996;20:41–6.

    PubMed  CAS  Google Scholar 

  34. Bobbioni-Harsch E, Morel P, Huber O, et al. Energy economy hampers body weight loss after gastric bypass. J Clin Endocrinol Metab. 2000;85:4695–700.

    Article  PubMed  CAS  Google Scholar 

  35. Ott MT, Ott L, Haack D, et al. The MEE/PEE ratio as a predictor of excess weight loss for up to 1 year after vertical banded gastroplasty. Arch Surg. 1992;127:1089–93.

    Article  PubMed  CAS  Google Scholar 

  36. Camerini G, Adami GF, Marinari GM, et al. Failure of preoperative resting energy expenditure in predicting weight loss after gastroplasty. Obes Res. 2001;9:589–91.

    Article  PubMed  CAS  Google Scholar 

  37. Das SK. Body composition measurement in severe obesity. Curr Opin Clin Nutr Metab Care. 2005;8:602–6.

    Article  PubMed  Google Scholar 

  38. Wang Z, Ying Z, Bosy-Westphal A, et al. Evaluation of specific metabolic rates of major organs and tissues: comparison between nonobese and obese women. Obesity Silver Spring. 2012;20:95–100.

    Article  PubMed  CAS  Google Scholar 

  39. Flancbaum L, Choban PS, Bradley LR, et al. Changes in measured resting energy expenditure after Roux-en-Y gastric bypass for clinically severe obesity. Surgery. 1997;122:943–9.

    Article  PubMed  CAS  Google Scholar 

  40. Flancbaum L, Verducci JS, Choban PS. Changes in measured resting energy expenditure after Roux-en-Y gastric bypass for clinically severe obesity are not related to bypass limb-length. Obes Surg. 1998;8:437–43.

    Article  PubMed  CAS  Google Scholar 

  41. Carey DG, Pliego GJ, Raymond RL. Body composition and metabolic changes following bariatric surgery: effects on fat mass, lean mass and basal metabolic rate: six months to one-year follow-up. Obes Surg. 2006;16:1602–8.

    Article  PubMed  Google Scholar 

  42. Sallet PC, Sallet JA, Dixon JB, et al. Eating behavior as a prognostic factor for weight loss after gastric bypass. Obes Surg. 2007;17:445–51.

    Article  PubMed  Google Scholar 

  43. Warde-Kamar J, Rogers M, Flancbaum L, et al. Calorie intake and meal patterns up to 4 years after Roux-en-Y gastric bypass surgery. Obes Surg. 2004;14:1070–9.

    Article  PubMed  Google Scholar 

  44. Brolin RE. Weight gain after short- and long-limb gastric bypass in patients followed for longer than 10 years. Ann Surg. 2007;246:163–4. author reply 164.

    Article  PubMed  Google Scholar 

  45. Faria SL, Faria OP, Lopes TC, et al. Relation between carbohydrate intake and weight loss after bariatric surgery. Obes Surg. 2009;19:708–16.

    Article  PubMed  Google Scholar 

  46. De Castro CM, de Lima Montebelo MI, Rasera Jr I, et al. Effects of Roux-en-Y gastric bypass on resting energy expenditure in women. Obes Surg. 2008;18:1376–80.

    Article  Google Scholar 

  47. Harris J. BF: a biometric study of basal metabolism in man. Washington: Carnegie Institute of Washington; 1919.

    Google Scholar 

  48. WHO. Organization: energy and protein requirements. Report of a joint FAO/WHO/UNU expert consultation. vol. 206. Geneva: WHO; 1985

  49. NR Council. Recommended dietary allowances. 10th edn. Washington: NR Council; 1989.

  50. Ruiz JR, Ortega FB, Rodriguez G, et al. Validity of resting energy expenditure predictive equations before and after an energy-restricted diet intervention in obese women. PLoS One. 2011;6:e23759.

    Article  PubMed  CAS  Google Scholar 

  51. Mifflin MD, St Jeor ST, Hill LA, et al. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51:241–7.

    PubMed  CAS  Google Scholar 

  52. Owen OE, Kavle E, Owen RS, et al. A reappraisal of caloric requirements in healthy women. Am J Clin Nutr. 1986;44:1–19.

    PubMed  CAS  Google Scholar 

  53. Westerterp KR, Donkers JH, Fredrix EW, et al. Energy intake, physical activity and body weight: a simulation model. Br J Nutr. 1995;73:337–47.

    Article  PubMed  CAS  Google Scholar 

  54. Benedetti G, Mingrone G, Marcoccia S, et al. Body composition and energy expenditure after weight loss following bariatric surgery. J Am Coll Nutr. 2000;19:270–4.

    PubMed  CAS  Google Scholar 

  55. Galtier F, Farret A, Verdier R, et al. Resting energy expenditure and fuel metabolism following laparoscopic adjustable gastric banding in severely obese women: relationships with excess weight lost. Int J Obes Lond. 2006;30:1104–10.

    Article  PubMed  CAS  Google Scholar 

  56. Lo CM, Samuelson LC, Chambers JB, et al. Characterization of mice lacking the gene for cholecystokinin. Am J Physiol Regul Integr Comp Physiol. 2008;294:R803–10.

    Article  PubMed  CAS  Google Scholar 

  57. Edelsbrunner ME, Herzog H, Holzer P. Evidence from knockout mice that peptide YY and neuropeptide Y enforce murine locomotion, exploration and ingestive behaviour in a circadian cycle- and gender-dependent manner. Behav Brain Res. 2009;203:97–107.

    Article  PubMed  CAS  Google Scholar 

  58. Sloth B, Holst JJ, Flint A, et al. Effects of PYY1-36 and PYY3-36 on appetite, energy intake, energy expenditure, glucose and fat metabolism in obese and lean subjects. Am J Physiol Endocrinol Metab. 2007;292:E1062–8.

    Article  PubMed  CAS  Google Scholar 

  59. Murphy KG, Bloom SR. Gut hormones in the control of appetite. Exp Physiol. 2004;89:507–16.

    Article  PubMed  CAS  Google Scholar 

  60. Murphy KG, Dhillo WS, Bloom SR. Gut peptides in the regulation of food intake and energy homeostasis. Endocr Rev. 2006;27:719–27.

    Article  PubMed  CAS  Google Scholar 

  61. Stanley S, Wynne K, Bloom S. Gastrointestinal satiety signals III. Glucagon-like peptide 1, oxyntomodulin, peptide YY, and pancreatic polypeptide. Am J Physiol Gastrointest Liver Physiol. 2004;286:693–7.

    Article  Google Scholar 

  62. Guo Y, Ma L, Enriori PJ, et al. Physiological evidence for the involvement of peptide YY in the regulation of energy homeostasis in humans. Obesity Silver Spring. 2006;14:1562–70.

    Article  PubMed  CAS  Google Scholar 

  63. Hill BR, De Souza MJ, Williams NI. Characterization of the diurnal rhythm of peptide YY and its association with energy balance parameters in normal-weight premenopausal women. Am J Physiol Endocrinol Metab. 2011;301:E409–15.

    Article  PubMed  CAS  Google Scholar 

  64. Sloth B, Davidsen L, Holst JJ, et al. Effect of subcutaneous injections of PYY1-36 and PYY3-36 on appetite, ad libitum energy intake, and plasma free fatty acid concentration in obese males. Am J Physiol Endocrinol Metab. 2007;293:E604–9.

    Article  PubMed  CAS  Google Scholar 

  65. Asakawa A, Inui A, Yuzuriha H, et al. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology. 2003;124:1325–36.

    Article  PubMed  CAS  Google Scholar 

  66. Hwa JJ, Ghibaudi L, Williams P, et al. Differential effects of intracerebroventricular glucagon-like peptide-1 on feeding and energy expenditure regulation. Peptides. 1998;19:869–75.

    Article  PubMed  CAS  Google Scholar 

  67. Osaka T, Endo M, Yamakawa M, et al. Energy expenditure by intravenous administration of glucagon-like peptide-1 mediated by the lower brainstem and sympathoadrenal system. Peptides. 2005;26:1623–31.

    Article  PubMed  CAS  Google Scholar 

  68. Flint A, Raben A, Rehfeld JF, et al. The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans. Int J Obes Relat Metab Disord. 2000;24:288–98.

    Article  PubMed  CAS  Google Scholar 

  69. Flint A, Raben A, Ersboll AK, et al. The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int J Obes Relat Metab Disord. 2001;25:781–92.

    Article  PubMed  CAS  Google Scholar 

  70. Pannacciulli N, Bunt JC, Koska J, et al. Higher fasting plasma concentrations of glucagon-like peptide 1 are associated with higher resting energy expenditure and fat oxidation rates in humans. Am J Clin Nutr. 2006;84:556–60.

    PubMed  CAS  Google Scholar 

  71. Brufau G, Bahr MJ, Staels B, et al. Plasma bile acids are not associated with energy metabolism in humans. Nutr Metab (Lond). 2010; 7:73.

    Google Scholar 

  72. Ockenga J, Valentini L, Schuetz T, et al. Plasma bile acids are associated with energy expenditure and thyroid function in humans. J Clin Endocrinol Metab. 2012;97:535–42.

    Article  PubMed  CAS  Google Scholar 

  73. Brolin RE, Kenler HA, Gorman JH, et al. Long-limb gastric bypass in the superobese. A prospective randomized study. Ann Surg. 1992;215:387–95.

    Article  PubMed  CAS  Google Scholar 

  74. Crenn P, Morin MC, Joly F, et al. Net digestive absorption and adaptive hyperphagia in adult short bowel patients. Gut. 2004;53:1279–86.

    Article  PubMed  CAS  Google Scholar 

  75. Farrel J. Digestion and absorption of nutrients and vitamins. In: Brandt LJ, Eldman M, editors. Sleisenger & Fordtran’s gastrointestinal and liver disease. Saunders Elsevier: Philadelphia; 2006. p. 2181–4.

    Google Scholar 

  76. Odstrcil EA, Martinez JG, Santa Ana CA, et al. The contribution of malabsorption to the reduction in net energy absorption after long-limb Roux-en-Y gastric bypass. Am J Clin Nutr. 2010;92:704–13.

    Article  PubMed  CAS  Google Scholar 

  77. Morinigo R, Moize V, Musri M, et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab. 2006;91:1735–40.

    Article  PubMed  CAS  Google Scholar 

  78. Bose M, Teixeira J, Olivan B, et al. Weight loss and incretin responsiveness improve glucose control independently after gastric bypass surgery. J Diabetes. 2010;2:47–55.

    Article  PubMed  CAS  Google Scholar 

  79. Laferrere B. Effect of gastric bypass surgery on the incretins. Diabetes Metab. 2009;35:513–7.

    Article  PubMed  CAS  Google Scholar 

  80. Laferrere B, Swerdlow N, Bawa B, et al. Rise of oxyntomodulin in response to oral glucose after gastric bypass surgery in patients with type 2 diabetes. J Clin Endocrinol Metab. 2010;95:4072–6.

    Article  PubMed  CAS  Google Scholar 

  81. Faria SL, Faria OP, de Almeida Cardeal M, et al. Diet-induced thermogenesis and respiratory quotient after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2012;8:797–802.

    Article  PubMed  Google Scholar 

  82. Sumithran P, Prendergast LA, Delbridge E, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med. 2011;365:1597–604.

    Article  PubMed  CAS  Google Scholar 

  83. Jakicic JM, Clark K, Coleman E, et al. American college of sports medicine position stand. Appropriate intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2001;33:2145–56.

    Article  PubMed  CAS  Google Scholar 

  84. Wing RR, Phelan S. Long-term weight loss maintenance. Am J Clin Nutr. 2005;82:222S–5S.

    PubMed  CAS  Google Scholar 

  85. Shephard RJ. Limits to the measurement of habitual physical activity by questionnaires. Br J Sports Med. 2003;37:197–206. discussion 206.

    Article  PubMed  CAS  Google Scholar 

  86. Lichtman SW, Pisarska K, Berman ER, et al. Discrepancy between self-reported and actual caloric intake and exercise in obese subjects. N Engl J Med. 1992;327:1893–8.

    Article  PubMed  CAS  Google Scholar 

  87. Shang E, Hasenberg T. Aerobic endurance training improves weight loss, body composition, and co-morbidities in patients after laparoscopic Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2010;6:260–6.

    Article  PubMed  Google Scholar 

  88. Vatier C, Henegar C, Ciangura C, et al. Dynamic relations between sedentary behavior, physical activity, and body composition after bariatric surgery. Obes Surg. 2012;22:1251–6.

    Article  PubMed  Google Scholar 

  89. Faria SL, Faria OP, Buffington C, et al. Dietary protein intake and bariatric surgery patients: a review. Obes Surg. 2011;21:1798–805.

    Article  PubMed  Google Scholar 

  90. Lorenzen J, Frederiksen R, Hoppe C, et al. The effect of milk proteins on appetite regulation and diet-induced thermogenesis. Eur J Clin Nutr. 2012;66:622–7.

    Article  PubMed  CAS  Google Scholar 

  91. Smeets AJ, Soenen S, Luscombe-Marsh ND, et al. Energy expenditure, satiety, and plasma ghrelin, glucagon-like peptide 1, and peptide tyrosine-tyrosine concentrations following a single high-protein lunch. J Nutr. 2008;138:698–702.

    PubMed  CAS  Google Scholar 

  92. Lejeune MP, Westerterp KR, Adam TC, et al. Ghrelin and glucagon-like peptide 1 concentrations, 24-h satiety, and energy and substrate metabolism during a high-protein diet and measured in a respiration chamber. Am J Clin Nutr. 2006;83:89–94.

    PubMed  CAS  Google Scholar 

  93. Boirie Y, Dangin M, Gachon P, et al. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci U S A. 1997;94:14930–5.

    Article  PubMed  CAS  Google Scholar 

  94. Andreu A, Moize V, Rodriguez L, et al. Protein intake, body composition, and protein status following bariatric surgery. Obes Surg. 2010;20:1509–15.

    Article  PubMed  Google Scholar 

  95. Moize V, Geliebter A, Gluck ME, et al. Obese patients have inadequate protein intake related to protein intolerance up to 1 year following Roux-en-Y gastric bypass. Obes Surg. 2003;13:23–8.

    Article  PubMed  Google Scholar 

  96. Carrasca F, Papapietro K, Csendes A, Salazar G, Echenique C, Lisboa C, Diaz E, Rojas J. Changes in resting energy expenditure and body composition after weight loss following Roux-en-Y gastric Bypass. Obes Surg. 2007;17:608–616.

    Google Scholar 

Download references

Acknowledgments

The Dr Laferrere and Miss Brakoniecki are supported through the NIH NIDDK ROI 067561 grant. The Dr Thivel is supported by the Clinical Nutrition and Metabolism Society through its 2011 Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Thivel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thivel, D., Brakonieki, K., Duche, P. et al. Surgical Weight Loss: Impact on Energy Expenditure. OBES SURG 23, 255–266 (2013). https://doi.org/10.1007/s11695-012-0839-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-012-0839-1

Keywords

Navigation