Skip to main content

Advertisement

Log in

The Increase in Serum Visfatin After Bariatric Surgery in Morbidly Obese Women is Modulated by Weight Loss, Waist Circumference, and Presence or Absence of Diabetes Before Surgery

  • Research Article
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Previous studies addressing the changes in serum visfatin levels after bariatric surgery yielded conflicting results.

Methods

We measured serum visfatin levels in 41 morbidly obese women before bariatric surgery and after losing at least 15% of the initial weight, and analyzed the results taking into account the type of surgery, reproductive and diabetic status, among others. Body mass index, waist circumference, lipid profile, and insulin resistance determined by homeostasis model assessment (HOMA-IR) were also measured.

Results

Patients lost 30.3 ± 6.1% of the initial body weight, and serum visfatin levels increased from 22.2 ± 20.9 to 32.2 ± 27.6 ng/ml (P = 0.031). A multiple regression model (R 2 = 0.314, F = 3.555, P = 0.017) including the percentage of weight loss, changes in waist circumference, HOMA-IR, high-density lipoprotein-cholesterol, and triglycerides (also expressed as percentage from baseline), the surgical procedure, time elapsed since surgery, and previous diabetic status as independent variables showed that weight loss (β = −0.670, P = 0.010), previous diabetic status (β = −0.330, P = 0.036), and change in waist circumference (β = 0.556, P = 0.031) were the main determinants of the percentual increase in serum visfatin levels observed after bariatric surgery.

Conclusion

Serum visfatin increased after bariatric surgery in relation to the amount of weight lost and to the changes in waist circumference, and this increase was higher in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Santry HP, Gillen DL, Lauderdale DS. Trends in bariatric surgical procedures. JAMA. 2005;294:1909–17.

    Article  PubMed  CAS  Google Scholar 

  2. Shah M, Simha V, Garg A. Review: long-term impact of bariatric surgery on body weight, comorbidities, and nutritional status. J Clin Endocrinol Metab. 2006;91:4223–31.

    Article  PubMed  CAS  Google Scholar 

  3. Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB. Years of life lost due to obesity. JAMA. 2003;289:187–93.

    Article  PubMed  Google Scholar 

  4. Sjostrom L, Lindroos AK, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.

    Article  PubMed  Google Scholar 

  5. Sugerman HJ, Wolfe LG, Sica DA, Clore JN. Diabetes and hypertension in severe obesity and effects of gastric bypass-induced weight loss. Ann Surg. 2003;237:751–6; discussion 7–8.

    Article  PubMed  Google Scholar 

  6. Escobar-Morreale HF, Botella-Carretero JI, Alvarez-Blasco F, Sancho J, San Millan JL. The polycystic ovary syndrome associated with morbid obesity may resolve after weight loss induced by bariatric surgery. J Clin Endocrinol Metab. 2005;90:6364–9.

    Article  PubMed  CAS  Google Scholar 

  7. Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307:426–30.

    Article  PubMed  CAS  Google Scholar 

  8. Stephens JM, Vidal-Puig AJ. An update on visfatin/pre-B cell colony-enhancing factor, an ubiquitously expressed, illusive cytokine that is regulated in obesity. Curr Opin Lipidol. 2006;17:128–31.

    Article  PubMed  CAS  Google Scholar 

  9. Pilz S, Mangge H, Obermayer-Pietsch B, Marz W. Visfatin/pre-B-cell colony-enhancing factor: a protein with various suggested functions. J Endocrinol Invest. 2007;30:138–44.

    PubMed  CAS  Google Scholar 

  10. Krzyzanowska K, Mittermayer F, Krugluger W, Kopp HP, Schernthaner G. Increase in visfatin after weight loss induced by gastroplastic surgery. Obesity (Silver Spring). 2006;14:1886–9.

    Article  CAS  Google Scholar 

  11. Manco M, Fernandez-Real JM, Equitani F, et al. Effect of massive weight loss on inflammatory adipocytokines and the innate immune system in morbidly obese women. J Clin Endocrinol Metab. 2007;92:483–90.

    Article  PubMed  CAS  Google Scholar 

  12. Haider DG, Schindler K, Schaller G, Prager G, Wolzt M, Ludvik B. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J Clin Endocrinol Metab. 2006;91:1578–81.

    Article  PubMed  CAS  Google Scholar 

  13. Li L, Yang G, Li Q, et al. Changes and relations of circulating visfatin, apelin, and resistin levels in normal, impaired glucose tolerance, and type 2 diabetic subjects. Exp Clin Endocrinol Diabetes. 2006;114:544–8.

    Article  PubMed  CAS  Google Scholar 

  14. Lopez-Bermejo A, Chico-Julia B, Fernandez-Balsells M, et al. Serum visfatin increases with progressive beta-cell deterioration. Diabetes. 2006;55:2871–5.

    Article  PubMed  CAS  Google Scholar 

  15. Tan BK, Chen J, Digby JE, Keay SD, Kennedy CR, Randeva HS. Increased visfatin messenger ribonucleic acid and protein levels in adipose tissue and adipocytes in women with polycystic ovary syndrome: parallel increase in plasma visfatin. J Clin Endocrinol Metab. 2006;91:5022–8.

    Article  PubMed  CAS  Google Scholar 

  16. Scopinaro N. Biliopancreatic diversion: mechanisms of action and long-term results. Obes Surg. 2006;16:683–9.

    Article  PubMed  Google Scholar 

  17. Rosenthal RJ, Szomstein S, Kennedy CI, Soto FC, Zundel N. Laparoscopic surgery for morbid obesity: 1,001 consecutive bariatric operations performed at The Bariatric Institute, Cleveland Clinic Florida. Obes Surg. 2006;16:119–24.

    Article  PubMed  Google Scholar 

  18. Zawadzki JK, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: toward a rational approach. In: Dunaif A, Givens JR, Haseltine FP, Merriam GR, editors. Polycystic ovary syndrome. Boston: Blackwell Scientific Publications; 1992. pp. 377–84.

    Google Scholar 

  19. Botella-Carretero J, Alvarez-Blasco F, Martinez-Garcia MA, Luque-Ramirez M, San Millan JL, Escobar-Morreale HF. The decrease in serum IL-18 levels after bariatric surgery in morbidly obese women is a time-dependent event. Obes Surg. 2007;17:1199–208.

    Google Scholar 

  20. Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab. 1999;84:3666–72.

    Article  PubMed  CAS  Google Scholar 

  21. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    Article  PubMed  CAS  Google Scholar 

  22. Zahorska-Markiewicz B, Olszanecka-Glinianowicz M, Janowska J, et al. Serum concentration of visfatin in obese women. Metabolism. 2007;56:1131–4.

    Article  PubMed  CAS  Google Scholar 

  23. Jian WX, Luo TH, Gu YY, et al. The visfatin gene is associated with glucose and lipid metabolism in a Chinese population. Diabet Med. 2006;23:967–73.

    Article  PubMed  CAS  Google Scholar 

  24. Pagano C, Pilon C, Olivieri M, et al. Reduced plasma visfatin/pre-B cell colony-enhancing factor in obesity is not related to insulin resistance in humans. J Clin Endocrinol Metab. 2006;91:3165–70.

    Article  PubMed  CAS  Google Scholar 

  25. Garcia-Fuentes E, Garcia-Almeida JM, Garcia-Arnes J, et al. Plasma visfatin concentrations in severely obese subjects are increased after intestinal bypass. Obesity (Silver Spring). 2007;15:2391–5.

    Article  CAS  Google Scholar 

  26. Fernandez-Real JM, Moreno JM, Chico B, Lopez-Bermejo A, Ricart W. Circulating visfatin is associated with parameters of iron metabolism in subjects with altered glucose tolerance. Diabetes Care. 2007;30:616–21.

    Article  PubMed  CAS  Google Scholar 

  27. Takebayashi K, Suetsugu M, Wakabayashi S, Aso Y, Inukai T. Association between plasma visfatin and vascular endothelial function in patients with type 2 diabetes mellitus. Metabolism. 2007;56:451–8.

    Article  PubMed  CAS  Google Scholar 

  28. Bottcher Y, Teupser D, Enigk B, et al. Genetic variation in the visfatin gene (PBEF1) and its relation to glucose metabolism and fat-depot-specific messenger ribonucleic acid expression in humans. J Clin Endocrinol Metab. 2006;91:2725–31.

    Article  PubMed  CAS  Google Scholar 

  29. Chan TF, Chen YL, Lee CH, et al. Decreased plasma visfatin concentrations in women with gestational diabetes mellitus. J Soc Gynecol Investig. 2006;13:364–7.

    Article  PubMed  CAS  Google Scholar 

  30. Haider DG, Handisurya A, Storka A, et al. Visfatin response to glucose is reduced in women with gestational diabetes mellitus. Diabetes Care. 2007;30:1889–91.

    Article  PubMed  CAS  Google Scholar 

  31. Haider DG, Mittermayer F, Schaller G, et al. Free fatty acids normalize a rosiglitazone-induced visfatin release. Am J Physiol Endocrinol Metab. 2006;291:E885–90.

    Article  PubMed  CAS  Google Scholar 

  32. Dogru T, Sonmez A, Tasci I, et al. Plasma visfatin levels in patients with newly diagnosed and untreated type 2 diabetes mellitus and impaired glucose tolerance. Diabetes Res Clin Pract. 2007;76:24–9.

    Article  PubMed  CAS  Google Scholar 

  33. Chen MP, Chung FM, Chang DM, et al. Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2006;91:295–9.

    Article  PubMed  CAS  Google Scholar 

  34. Krzyzanowska K, Krugluger W, Mittermayer F, et al. Increased visfatin concentrations in women with gestational diabetes mellitus. Clin Sci (Lond). 2006;110:605–9.

    Article  CAS  Google Scholar 

  35. Hsieh CH, He CT, Lee CH, Wu LY, Hung YJ. Both slow-release and regular-form metformin improve glycemic control without altering plasma visfatin level in patients with type 2 diabetes mellitus. Metabolism. 2007;56:1087–92.

    Article  PubMed  CAS  Google Scholar 

  36. Hammarstedt A, Pihlajamaki J, Rotter Sopasakis V, et al. Visfatin is an adipokine, but it is not regulated by thiazolidinediones. J Clin Endocrinol Metab. 2006;91:1181–4.

    Article  PubMed  CAS  Google Scholar 

  37. Arner P. Visfatin-a true or false trail to type 2 diabetes mellitus. J Clin Endocrinol Metab. 2006;91:28–30.

    Article  PubMed  CAS  Google Scholar 

  38. Prins JB, O’Rahilly S. Regulation of adipose cell number in man. Clin Sci (Lond). 1997;92:3–11.

    CAS  Google Scholar 

  39. Loftus TM, Kuhajda FP, Lane MD. Insulin depletion leads to adipose-specific cell death in obese but not lean mice. Proc Natl Acad Sci U S A. 1998;95:14168–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Genoveva Gonzalez, Endocrinology Laboratory, Hospital Universitario Ramón y Cajal for excellent technical help. This study was supported by the Spanish Ministry of Health and Consumer Affairs, Instituto de Investigación Carlos III, grants FIS PI050341 and REDIMET RD06/0015/0007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor F. Escobar-Morreale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botella-Carretero, J.I., Luque-Ramírez, M., Álvarez-Blasco, F. et al. The Increase in Serum Visfatin After Bariatric Surgery in Morbidly Obese Women is Modulated by Weight Loss, Waist Circumference, and Presence or Absence of Diabetes Before Surgery. OBES SURG 18, 1000–1006 (2008). https://doi.org/10.1007/s11695-007-9369-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-007-9369-7

Keywords

Navigation