Skip to main content
Log in

Quantum entanglement in photoactive prebiotic systems

  • Review
  • Published:
Systems and Synthetic Biology

Abstract

This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6169

    Article  CAS  Google Scholar 

  • Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  • Brukner C, Zeilinger A (2009) Information invariance and quantum probabilities. Found Phys 39:677–689

    Article  Google Scholar 

  • Cai J, Popescu S, Briegel HJ (2010) Dynamic entanglement in oscillating molecules and potential biological implications. Phys Rev E Stat Nonlinear Soft Matter Phys 82:021921

    Article  CAS  Google Scholar 

  • Cape JL, Monnard PA, Boncella JM (2011) Prebiotically relevant mixed fatty acid vesicles support anionic solute encapsulation and photochemically catalysed trans-membrane charge transport. Chem Sci 2:661–671

    Article  CAS  Google Scholar 

  • Collini E, Wong CY, Wilk KE, Curmi PMG, Brumer P, Scholes GD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463:644–647

    Article  CAS  PubMed  Google Scholar 

  • DeClue MS, Monnard PA, Bailey JA, Maurer SE, Collis GE, Ziock HJ, Rasmussen S, Boncella JM (2009) Nucleobase mediated, photocatalytic vesicle formation from an ester precursor. J Am Chem Soc 131:931–933

    Article  CAS  PubMed  Google Scholar 

  • Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  • Edson JB, Spencer LP, Boncella JM (2011) Photorelease of primary aliphatic and aromatic amines by visible-light-induced electron transfer. Org Lett 13:6156–6159

    Article  CAS  PubMed  Google Scholar 

  • Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Auxiliary basis sets to approximate coulomb potentials. Chem Phys Lett 242:652–660

    Article  CAS  Google Scholar 

  • Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 47:777–780. doi:10.1103/PhysRev.47.777

    Article  CAS  Google Scholar 

  • Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T, Cheng YC, Blankenship RE, Fleming GR (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic complexes. Nature 446:782–786

    Article  CAS  PubMed  Google Scholar 

  • Fedo CM, Whitehouse MJ (2002) Metasomatic origin of quartz–pyroxene rock, Akilia, Greenland, and implications for Earth’s earliest life. Science 296:1448–1452

    Article  CAS  PubMed  Google Scholar 

  • Gessner MO, Newell SY (2002) Biomass, growth rate, and production of filamentous fungi in plant litter. In: Hurst CJ, Crawford RL, Knudsen G, McInerney M, Stetzenbach LD (eds) Manual of environmental microbiology, 2nd edn. ASM Press, Washington, pp 390–408

    Google Scholar 

  • Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comp Chem 27:1787–1799

    Article  CAS  Google Scholar 

  • Holick MF (2003) Vitamin D: a millennium perspective. J Cell Biochem 88:296–307

    Article  CAS  PubMed  Google Scholar 

  • Jensen F (1999) Introduction to computational chemistry. Wiley, Chichester

    Google Scholar 

  • Lutz D (2011) WUSTL physicist debates ‘quantum mind’ at New York roundtable. Alford argues for intellectual humility and pragmatism with proponents of the quantum-mind theory of consciousness. Washington University in St. Louis. http://news.wustl.edu/news/Pages/21834.aspx. Accessed 10 May 2013

  • Maher KA, Stevenson DJ (1988) Impact frustration of the origin of life. Nature 331:612–614

    Article  CAS  PubMed  Google Scholar 

  • Marques MAL, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EKU (2006) Time-dependent density functional theory. Lecture Notes in Physics. Springer, Berlin

  • Maurer SE, Deamer DW, Boncella JM, Monnard PA (2009) Chemical evolution of amphiphiles: glycerol monoacyl derivatives stabilize plausible prebiotic membranes. Astrobiology 9:979–987

    Article  CAS  PubMed  Google Scholar 

  • Maurer SE, DeClue MS, Albertsen AN, Dorr M, Kuiper DS, Ziock H, Rasmussen S, Boncella JM, Monnard PA (2011) Interactions between catalysts and amphiphilic structures and their implications for a protocell model. ChemPhysChem 12:828–835

    Article  CAS  PubMed  Google Scholar 

  • Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CR (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59

    Article  CAS  PubMed  Google Scholar 

  • Morse JW, MacKenzie FT (1988) Hadean ocean carbonate chemistry. Aquat Geochem 4:301–319

    Article  Google Scholar 

  • Neese F (2003) A Spectroscopy oriented configuration interaction procedure. J Chem Phys 119:9428–9443

    Article  CAS  Google Scholar 

  • Neese F (2009) ORCA—an ab initio, density functional and semiempirical program package, Version 2.6.04. Max-Planck-Institut fur Bioanorganische Chemie, Muelheim an der Ruhr and Universitaet Bonn

  • Noffke N, Christian D, Wacey D, Hazen RM (2013) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old dresser formation, Pilbara, Western Australia. Astrobiology. doi:10.1089/ast.2013.1030

  • Nutman AP, Friend CRL, Paxton S (2009) Detrital zircon sedimentary provenance ages for the Eoarchaean Isua supracrustal belt southern West Greenland: juxtaposition of an imbricated ca. 3700 Ma juvenile arc against an older complex with 3920-3760 Ma components. Precambrian Res 172:212–233

    Article  CAS  Google Scholar 

  • Ohtomo Y, Kakegawa T, Ishida A, Nagase T, Rosing MT (2013) Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks. Nat Geosci. doi:10.1038/ngeo2025

    Google Scholar 

  • Pauls JA, Zhang Y, Berman GP, Kais S (2013) Quantum coherence and entanglement in the avian compass. Phys Rev E Stat Nonlinear Soft Matter Phys 87:062704

    Article  CAS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen S, Chen L, Nilsson M, Abe S (2003) Bridging nonliving and living matter. Artif Life 9:269–316

    Article  PubMed  Google Scholar 

  • Rasmussen S, Bailey J, Boncella J, Chen L, Collis G, Colgate S, DeClue M, Goranovic G, Jiang Y, Sen A, Shreve A, Tamulis A, Travis B, Weronski P, Woodruff WH, Zhang J, Zhou X, Ziock H (2008) Assembly of a minimal protocell. In: Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF (eds) Protocells: bridging nonliving and living matter. MIT Press, Cambridge, pp 125–156

    Chapter  Google Scholar 

  • Rieper R, Anders J, Vedral V (2011) Quantum entanglement between the electron clouds of nucleic acids in DNA. arXiv.org e-Print archive. http://arxiv.org/abs/1006.4053v2

  • Rinkevicius Z, Tamulis A, Tamuliene J (2006) Beta-Diketo Structure for quantum information processing. Lith J Phys 46:413–416

    Article  CAS  Google Scholar 

  • Sarovar M, Ishizaki A, Fleming GR, Whaley KB (2010) Quantum entanglement in photosynthetic light harvesting complexes. Nat Phys 6:462–467

    Article  CAS  Google Scholar 

  • Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ, Czaja AD (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416:73–76

    Article  CAS  PubMed  Google Scholar 

  • Schrödinger E, Born M (1935) Discussion of probability relations between separated systems. Math Proc Camb 31:555–563

    Article  Google Scholar 

  • Schrödinger E, Dirac PAM (1936) Probability relations between separated systems. Math Proc Camb 32:446–452

    Article  Google Scholar 

  • Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47:1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Tamuliene J, Tamulis A, Kulys J (2004) Electronic structure of dodecyl syringate radical suitable for ESR molecular quantum computers. Nonlinear Anal Mod Control 9:185–196

    CAS  Google Scholar 

  • Tamulis A (2008a) Quantum mechanical interpretation of the origin of life. In: Ruksenas O (ed) Science in the Faculty of Natural Sciences of Vilnius University, Proceedings of 5th science conference. Publishing house of Vilnius University, Vilnius, Lithuania, pp 7–19

  • Tamulis A (2008b) Quantum self-assembly of artificial minimal living cells and molecular electronics control. Viva Origino 36:10–19

    CAS  Google Scholar 

  • Tamulis A (2008c) Quantum mechanical control of artificial minimal living cells. NeuroQuantology 6:311–322

    Article  Google Scholar 

  • Tamulis A (2011) Quantum mechanical investigations of photosynthetic systems of artificial minimal cells based on 8-oxo-guanine-Ru(bipyridine)(3)(2+). J Comput Theor Nanosci 8:624–636

    Article  CAS  Google Scholar 

  • Tamulis A, Grigalavicius M (2010a) Quantum mechanical evolution of fatty acids world life. Viva Origino 38:4–17

    CAS  Google Scholar 

  • Tamulis A, Grigalavicius M (2010b) Quantum mechanical origin of genetic material in minimal protocells. J Comput Theor Nanosci 7:1831–1841

    Article  CAS  Google Scholar 

  • Tamulis A, Grigalavicius M (2011) The emergence and evolution of life in a “fatty acid world” based on quantum mechanics. Orig Life Evol Biosph 41:51–71

    Article  CAS  PubMed  Google Scholar 

  • Tamulis A, Grigalavicius M (2013) Molecular spintronics control of photosynthesis in artificial cell. J Comput Theor Nanosci 10:989–995

    Article  CAS  Google Scholar 

  • Tamulis A, Grigalavicius M (2014) Quantum mechanical origin of fatty acid life and correlations with anthropic principle and Old Testament. Quantum Matter 3:460–468

    Article  Google Scholar 

  • Tamulis A, Tamulis V (2007a) Quantum self-assembly and photoinduced electron tunneling in photosynthetic system of minimal living cell. Viva Origino 35:66–72

    CAS  Google Scholar 

  • Tamulis A, Tamulis V (2007b) Question 9: quantum self-assembly and photoinduced electron tunnelling in photosynthetic systems of artificial minimal living cells. Orig Life Evol Biosph 37:473–476

    Article  PubMed  Google Scholar 

  • Tamulis A, Tamulis V (2008) Quantum mechanical design of molecular electronics OR gate for regulation of minimal cell functions. J Comput Theor Nanosci 5:545–553

    CAS  Google Scholar 

  • Tamulis A, Tamuliene J, Tamulis V (2003a) Quantum mechanical design of photoactive molecular machines and logical devices. In: Nalwa HS (ed) Handbook of photochemistry and photobiology, supramolecular photochemistry. American Scientific Publishers, Stevenson Ranch, pp 495–553

    Google Scholar 

  • Tamulis A, Tsifrinovich VI, Tretiak S, Berman GP, Allara DL (2003b) Neutral radical molecules ordered in self-assembled monolayer systems for quantum information processing. arXiv.org e-Print archive. http://arxiv.org/abs/quant-ph/0307136

  • Tamulis A, Tamuliene J, Tamulis V, Ziriakoviene A (2004) Quantum mechanical design of molecular computers elements suitable for self-assembling to quantum computing living systems. In: 6th international conference on self-formation theory and applications. Scintec Publications, Switzerland, pp 175–180

  • Tamulis A, Tamulis V, Graja A (2006) Quantum mechanical modeling of self-assembly and photoinduced electron transfer in PNA-based artificial living organisms. J Nanosci Nanotechnol 6:965–973

    Article  CAS  PubMed  Google Scholar 

  • Tamulis A, Tamulis V, Ziock H, Rasmussen S (2008) Influence of water and fatty acid molecules on quantum photoinduced electron tunnelling in photosynthetic systems of PNA based self-assembled protocells. In: Ross R, Mohanty S (eds) Multiscale simulation methods for materials. Wiley, New Jersey, pp 9–28

    Google Scholar 

  • Tamulis A, Grigalavicius M, Medzevicius G, Krisciukaitis S (2012) Quantum entangled photosynthesis and or logic gates controlling minimal artificial cell. J Comput Theor Nanoseci 9:351–359

    Article  CAS  Google Scholar 

  • Tamulis A, Grigalavicius M, Baltrusaitis J (2013) Phenomenon of quantum entanglement in a system composed of two minimal protocells. Orig Life Evol Biosph 43:49–66

    Article  CAS  PubMed  Google Scholar 

  • Tamulis A, Grigalavicius M, Krisciukaitis S (2014) Quantum entanglement in a system composed of two prebiotic kernels with molecular spintronics logic devices for control of photosynthesis. J Comput Theor Nanosci 11

  • Treutler O, Ahlrichs R (1995) Efficient molecular numerical integration schemes. J Chem Phys 102:346–354

    Article  CAS  Google Scholar 

  • TURBOMOLE V6.0 (2009) A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007. TURBOMOLE GmbH, since 2007. www.turbomole.com

  • Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr. Jonas Baltrusaitis who was a member of the Departments of Chemistry and Chemical/Biochemical Engineering, EMRB 75 University of Iowa, Iowa City, IA 52242, USA until July 2012 and grateful for the use of the computing facilities at the University of Iowa for the quantum chemical calculations of photosynthetic prebiotic kernels (4) and (7) presented in this review. The quantum mechanical investigations of separate molecules and photoactive prebiotic kernels as well as the preliminary calculations of systems of prebiotic kernels presented in this article were performed on the Linux servers cluster of Vilnius University Institute of Theoretical Physics and Astronomy purchased using funds of European Union FP6 project “Programmable Artificial Cell Evolution”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvydas Tamulis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamulis, A., Grigalavicius, M. Quantum entanglement in photoactive prebiotic systems. Syst Synth Biol 8, 117–140 (2014). https://doi.org/10.1007/s11693-014-9138-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-014-9138-6

Keywords

Navigation