Skip to main content
Log in

Hatching Asynchrony and Spring Climatic Conditions in the European Roller

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Hatching asynchrony (HA hereafter) leads to patent age and size hierarchies within broods of altricial birds, disadvantaging runts through a reduced condition/survival. The function of HA is controversial, although a general hypothesis states that HA would be an adaptive maternal mechanism for maximizing reproductive output under particular ecological conditions. Accordingly, when ecological conditions are not favourable, asynchronous broods would outperform synchronous broods because the formers would allow for an adaptive adjustment of brood size. A poorly untested prediction emerging from this hypothesis is that the adaptive value of HA should change with environmental conditions in relatively long time windows within a population. Using data from 8 years of a population of the asynchronous European roller Coracias garrulus, we studied variation in HA and fecundity selection on HA. Hatching span (ranging from 1 to 8 days) was longer in larger broods and later in the breeding season. Interestingly, we found that asynchronous broods were more fecund than synchronous ones in colder and drier years in April, which is the previous month to reproduction, and the opposite was true in years with warmer but rainier Aprils. Given that warmer and rainier Aprils relate to advanced and increased arthropod availability in the Mediterranean region, these results would suggest that HA in rollers might function as an adaptive trait that provides parents of asynchronous broods with some benefits in years with low productivity, in agreement with the Lack’s brood reduction hypothesis, and illustrate the relevance of studying the adaptive value of HA over gradients of environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amundsen, T., & Slagsvold, T. (1996). Lack’s brood reduction hypothesis and avian hatching asynchrony: What’s next? Oikos, 76, 613–620.

    Article  Google Scholar 

  • Arnold, T. W. (2011). An experimental study of fledging success in American coots (Fulica americana): effects of brood size, food availability, and hatching asynchrony. Auk, 128, 737–745.

    Article  Google Scholar 

  • Avilés, J. M., & Parejo, D. (1997). Dieta de los pollos de carraca (Coracias garrulus) en una zona mediterránea (Extremadura, suroeste de España). Ardeola, 44, 234–239.

    Google Scholar 

  • Avilés, J. M., Parejo, D., & Rodríguez, J. (2011). Parental favouritism strategies in the asynchronously hatching European roller (Coracias garrulus). Behavioral Ecology and Sociobiology, 65, 1549–1557.

    Article  Google Scholar 

  • Avilés, J. M., Sánchez, J. M., Sánchez, A., & Parejo, D. (1999). Breeding biology of the roller Coracias garrulus in farming areas of the southwest Iberian Peninsula. Bird Study, 46, 217–223.

    Article  Google Scholar 

  • Bortolotti, G. R., & Wiebe, K. L. (1993). Incubation behavior and hatching patterns in the American kestrel Falco sparverius. Ornis Scandinavica, 24, 41–47.

    Article  Google Scholar 

  • Chaine, A. S., & Lyon, B. E. (2008). Adaptive plasticity in female mate choice dampens sexual selection on male ornaments in the lark bunting. Science, 319, 459–462.

    Article  CAS  PubMed  Google Scholar 

  • Clark, A. B., & Wilson, D. S. (1981). Avian breeding adaptations: Hatching asynchrony, brood reduction, and nest failure. Quarterly Review of Biology, 56, 253–277.

    Article  Google Scholar 

  • Coca-Abia, M. M., Tenas-Pérez, I., Giménez-Legarre, S., & García-Muñoz, E. (2010). A preliminary study of the biology of the grasshopper Calliptamus wattenwylianus (Orthoptera; Acrididae). Boletín de Sanidad Vegetal, Plagas, 36, 149–155.

    Google Scholar 

  • Cockburn, A., Osmond, H. L., & Double, M. C. (2008). Swingin’ in the rain: Condition dependence and sexual selection in a capricious world. Proceedings of the Royal Society, Series B, 275, 605–612.

    Article  Google Scholar 

  • Cramp, S., & Simmons, K. E. L. (1988). The birds of the western Palearctic. Oxford: Oxford University Press.

    Google Scholar 

  • Etterson, J. R. (2004). Evolutionary potential of Chamaecrista fasciculata in relation to climate change. 1. Clinal patterns of selection along an environmental gradient in the great plains. Evolution, 58, 1446–1458.

    Article  PubMed  Google Scholar 

  • Forbes, L. S. (1994). The good, the bad and the ugly: Lack’s brood reduction hypothesis and experimental design. Journal of Avian Biology, 25, 338–343.

    Article  Google Scholar 

  • Frampton, G. K., Van den Brink, P. J., & Gould, P. J. L. (2000). Effects of spring drought and irrigation on farmland arthropods in southern Britain. Journal of Applied Ecology, 37, 865–883.

    Article  Google Scholar 

  • Garant, D., Kruuk, L. E. B., McCleery, R. H., & Sheldon, B. C. (2004). Evolution in a changing environment: A case study with great tit fledging mass. The American Naturalist, 164, E115–E129.

    Article  PubMed  Google Scholar 

  • Gilby, A. J. (2011). The adaptive benefit of hatching asynchrony in wild zebra finches. Animal Behaviour, 82, 479–484.

    Article  Google Scholar 

  • Gordo, O., Sanz, J. J., & Lobo, J. M. (2010). Determining the environmental factors underlying the spatial variability of insect appearance phenology for the honey bee, Apis mellifera, and the small white, Pieris rapae. Journal of Insect Science, 10, 1–21.

    Article  Google Scholar 

  • Grant, P. R., & Grant, B. R. (2002). Unpredictable evolution in a 30-year study of Darwin’s finches. Science, 296, 707–711.

    Article  CAS  PubMed  Google Scholar 

  • Hebert, P. N., & McNeil, R. (1999). Hatching asynchrony and food stress in ring-billed gulls: An experimental study. Canadian Journal of Zoology, 77, 515–523.

    Article  Google Scholar 

  • Hussell, D. J. T. (1972). Factors affecting clutch size in arctic passerine. Ecological Monograph, 42, 317–364.

    Article  Google Scholar 

  • Hussell, D. J. T. (1985). On the adaptive basis for hatching asynchrony: Brood reduction, nest failure and asynchronous hatching in snow buntings. Ornis Scandinavica, 16, 205–212.

    Article  Google Scholar 

  • Illera, J. C., & Díaz, M. (2006). Reproduction in an endemic bird of a semiarid island: a food-mediated process. Journal of Avian Biology, 37, 447–456.

    Article  Google Scholar 

  • IPCC. (2007). Summary for policymakers. In S. Solomon, D. Qin, M. Manning, Z. Chen, & M. Marquis (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (pp. 1–35). Cambridge: Cambridge University Press.

    Google Scholar 

  • Kontiainen, P., Pietiainen, H., Karell, P., Pihlaja, T., & Brommer, J. E. (2010). Hatching asynchrony is an individual property of female Ural owls which improves nestling survival. Behavioral Ecology, 21, 722–729.

    Article  Google Scholar 

  • Lack, D. (1966). Population studies of birds. Oxford: Clarendon.

    Google Scholar 

  • Li, S. H., & Brown, J. L. (1999). Influence of climate on reproductive success in Mexican Jays. Auk, 116, 924–936.

    Article  Google Scholar 

  • Lindström, J. (1999). Early development and fitness in birds and mammals. Trends in Ecology & Evolution, 14, 343–348.

    Article  Google Scholar 

  • Magrath, R. D. (1989). Hatching asynchrony and reproductive success in the blackbird. Nature, 339, 536–538.

    Article  Google Scholar 

  • Magrath, R. D. (1990). Hatching asynchrony in altricial birds. Biological Reviews of the Cambridge Philosophical Society, 65, 587–622.

    Article  Google Scholar 

  • Magrath, R. D. (1992). Seasonal changes in egg mass within and among cluthes of birds: General explanations and a field-study of the blackbird Turdus merula. Ibis, 134, 171–179.

    Article  Google Scholar 

  • Mock, D. W., & Forbes, L. C. (1994). Life-history consequences of avian brood reduction. Auk, 111, 115–123.

    Article  Google Scholar 

  • Møller, A. P. (2002). North Atlantic Oscillation (NAO) effects of climate on the relative importance of first and second clutches in a migratory passerine bird. Journal of Animal Ecology, 71, 201–210.

    Article  Google Scholar 

  • Nussey, D. H., Clutton-Brock, T. H., Elston, D. A., Albon, S. D., & Kruuk, L. E. B. (2005). Phenotypic plasticity in a maternal trait in red deer. Journal of Animal Ecology, 74, 387–396.

    Article  Google Scholar 

  • Parejo, D., & Avilés, J. M. (2011). Predation risk determines breeding territory choice in a Mediterranean cavity-nesting bird community. Oecologia, 165, 185–191.

    Article  PubMed  Google Scholar 

  • Parejo, D., Avilés, J. M., Peña, A., Sánchez, L., Ruano, F., Zamora-Muñoz, C., & Martín-Vivaldi, M. (2013). Armed rollers: Does nestling’s vomit function as a defence against predators? PLoS One, 8, e68862.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parejo, D., Avilés, J., & Rodríguez, J. (2012). Supplemental food affects egg size but not hatching asynchrony in rollers. Behavioral Ecology Sociobiology, 66, 1097–1105.

    Article  Google Scholar 

  • Parejo, D., Silva, N., & Avilés, J. M. (2007). Within-brood size differences affect innate and acquired immunity in roller Coracias garrulus nestlings. Journal of Avian Biology, 38, 717–725.

    Article  Google Scholar 

  • Pikanowski, B. C. (1992). A revision of Lack’s brood reduction hypothesis. The American Naturalist, 139, 1270–1292.

    Article  Google Scholar 

  • Quesada-Moraga, E., & Santiago-Álvarez, C. (2000). Temperature related effects on embryonic development in the mediterranean locust Dociostaurus maroccanus. Physiological Entomology, 25, 191–195.

    Article  Google Scholar 

  • Reimchen, T. E., & Nosil, P. (2002). Temporal variation in divergent selection on spine number in threespine stickleback. Evolution, 56, 2472–2483.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, M. R. (2008). Environmental heterogeneity generates fluctuating selection on a secondary sexual trait. Current Biology, 18, 751–757.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez, J., Avilés, J. M., & Parejo, D. (2011). The value of nestboxes in the conservation of Eurasian Rollers Coracias garrulus in southern Spain. Ibis, 153, 735–745.

    Article  Google Scholar 

  • Rodríguez, C., & Bustamante, J. (2003). The effect of weather on lesser kestrel breeding success: Can climate change explain historical population declines? Journal of Animal Ecology, 72, 793–810.

    Article  Google Scholar 

  • Rotenberry, J. T., & Wiens, J. A. (1991). Weather and reproductive variation in shrubsteppe sparrows: A hierarchical analysis. Ecology, 72, 1325–1335.

    Article  Google Scholar 

  • Santiago-Álvarez, C., Quesada-Moraga, E., & Hernández-Crespo, P. (2003). Diapause termination and postdiapause development in the Mediterranean locust Dociostaurus maroccanus (Orthoptera: Acrididae) under field conditions. Journal of Applied Entomology, 127, 369–373.

    Article  Google Scholar 

  • Sillett, T. S., Holmes, R. T., & Sherry, T. W. (2000). Impacts of a global climate cycle on population dynamics of a migratory songbird. Science, 288, 2040–2042.

    Article  CAS  PubMed  Google Scholar 

  • Skagen, S. K. (1988). Asynchronous hatching and food limitation: A test of Lack’s hypothesis. Auk, 105, 78–88.

    Google Scholar 

  • Stenning, M. J. (1996). Hatching asynchrony, brood reduction and other rapidly reproducing hypotheses. Trends in Ecology & Evolution, 11, 243–246.

    Article  CAS  Google Scholar 

  • Stoleson, S. H., & Beissinger, S. R. (1995). Hatching asynchrony and the onset of incubation in birds, revisited. When is the critical period? Current Ornithology, 12, 191–270.

    Article  Google Scholar 

  • Stoleson, S. H., & Beissinger, S. R. (1997). Hatching asynchrony, brood reduction, and food limitation in a neotropical parrot. Ecological Monograph, 67, 131–154.

    Article  Google Scholar 

  • Szollosi, E., Rosivall, B., & Torok, J. (2007). Is hatching asynchrony beneficial for the brood? Behavioral Ecology, 18, 420–426.

    Article  Google Scholar 

  • Theofanellis, T., Galinou, E., & Akriotis, T. (2008). The role of hatching asynchrony in brood size reduction of the great tit Parus major in a Mediterranean pine forest. Journal of Natural History, 42, 375–380.

    Article  Google Scholar 

  • Valkama, J., Korpimaki, E., Holm, A., & Hakkarainen, H. (2002). Hatching asynchrony and brood reduction in Tengmalm’s owl Aegolius funereus: The role of temporal and spatial variation in food abundance. Oecologia, 133, 334–341.

    Article  Google Scholar 

  • Wang, J. M., & Beissinger, S. R. (2011). Partial incubation in birds: Its ccurrence, function, and quantification. Auk, 128, 454–466.

    Article  Google Scholar 

  • Weatherhead, P. J. (2005). Effects of climate variation on timing of nesting, reproductive success, and offspring sex ratios of red-winged blackbirds. Oecologia, 144, 168–175.

    Article  PubMed  Google Scholar 

  • Wellicome, T. I. (2005). Hatching asynchrony in Burrowing Owls is influenced by clutch size and hatching success but not by food. Oecologia, 142, 326–334.

    Article  PubMed  Google Scholar 

  • Wiebe, K. L. (1995). Explaining intraspecific variation in hatching asynchrony: Should birds choose optimal hatching patterns? Oikos, 74, 453–462.

    Article  Google Scholar 

  • Wiebe, K. L., & Bortolotti, G. R. (1994). Energetic efficiency of reproduction: The benefits of asynchronous hatching for American kestrels. Journal of Animal Ecology, 63, 551–560.

    Article  Google Scholar 

  • Wiebe, K. L., & Bortolotti, G. R. (1995). Food-dependent benefits of hatching asynchrony in American kestrels Falco sparverius. Behavioral Ecology and Sociobiology, 36, 49–57.

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Rodríguez-Ruiz and F. Goytre who helped us with data collection. This study was funded by the Spanish Ministry of Education and Science/FEDER through the Projects CGL2005-04654/BOS, CGL2008-00718/BOS and CGL2011-27561/BOS to DP and JMA, PIE 200930I029 to JMA and by the Government of Extremadura through the contract TA13002 to DP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deseada Parejo.

Ethics declarations

Conflict of interest

The authors declare that they do not have conflict of interest.

Ethical Statement

Data was collected under license of the Junta de Andalucía, Spanish region in which the study was done. Therefore, data collection complies with the current laws of Spain, where the study was performed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parejo, D., Avilés, J.M. & Expósito, M. Hatching Asynchrony and Spring Climatic Conditions in the European Roller. Evol Biol 42, 443–451 (2015). https://doi.org/10.1007/s11692-015-9337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-015-9337-4

Keywords

Navigation