Skip to main content
Log in

Noncoding DNA as a Phenotypic Driver

  • Essay
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The genotype–phenotype interactions has been a core topic in biology since the seminal works of Weismann that distinguished between the genotype transmitted by the germ cells to the phenotype of the developing individual that was shaped by a combination of traits “coded for” by the genotype and environmental impacts. While the genotype–phenotype discussion primarily concerns genotype in the sense of alleles or copy-number of protein-coding genes including regulatory elements, the impact of non-protein coding elements like transposons on the phenotype has been recognized for several decades. Transposons constitute a major share of most genomes, and genome size per se display a tremendous variability even between closely related organisms. The extent to which this affect morphology and a range of fitness-related phenotypic traits like cell size, body size, morphology, growth rate, behavior, life cycle and potentially also speciation calls for a closer attention towards genome size as phenotypic determinant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andrews, C. B., & Gregory, T. R. (2009). Genome size is inversely correlated with relative brain size in parrots and cockatoos. Genome, 52, 261–267.

    Article  CAS  PubMed  Google Scholar 

  • Baillie, J. K., Barnett, M. W., & Upton, K. R. (2011). Somatic retrotransposition alters the genetic landscape of the human brain. Nature, 479, 534–537.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beaton, M. J., & Hebert, P. D. N. (1987). The cellular basis of divergent head morphologies in Daphnia. Limnology and Oceanography, 42, 346–356.

    Article  Google Scholar 

  • Bennett, M. D. (1987). Variation in genome form in plants and its ecological implications. New Phytologist, 196, 177–200.

    Google Scholar 

  • Brochmann, C., Brysting, A. K., Alsos, I. G., Borgen, L., Grundt, H. H., Scheen, A. C., & Elven, R. (2004). Polyploidy in arctic plants. Biological Journal of the Linnean Society, 82, 521–536.

    Article  Google Scholar 

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771–1789.

    Article  Google Scholar 

  • Carbone, L., Harris, R. A., Gnerre, S., et al. (2014). Gibbon genome and the fast karyotype evolution in small apes. Nature, 513, 195–201.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. (1978). Nuclear volume control by nucleoskeletal DNA, selections for cell volume and cell growth rate and the solution of the DNA C-value paradox. Journal of Cell Science, 34, 247–278.

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. (1985). Cell volume and the evolution of eukaryotic genome size. In T. Cavalier-Smith (Ed.), The evolution of genome size (pp. 104–184). Chichester: Wiley.

    Google Scholar 

  • Chenais, B., Caruso, A., Hiard, S., & Casse, N. (2012). The impact of transposable elements in eucaryotic genomes: From genome size increase to genetic adaptation to stressful environments. Gene, 509, 7–15.

    Article  CAS  PubMed  Google Scholar 

  • Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.

    Google Scholar 

  • Ferrari, J. A., & Rai, K. S. (1989). Phenotypic correlates of genome size variation in Aedes albopictus. Evolution, 43, 895–899.

    Article  Google Scholar 

  • Finston, T. L., Hebert, P. D. N., & Footit, B. (1995). Genome size variation in aphids. Insect Biochemistry and Molecular Biology, 25, 189–196.

    Article  CAS  Google Scholar 

  • Gambi, M. C., et al. (1997). Variation in genome size of benthic polychaetes: Systematic and ecological relationships. Journal of the Marine Biological Association, 77, 1045–1057.

    Article  Google Scholar 

  • Gillooly, J. F., Allen, A. P., Brown, J. H., Elser, J. J., Savage, V. M., West, G. B., et al. (2005). The metabolic basis of whole-organism RNA and phosphorus stoichiometry. Proceedings of National Academy of Sciences, 102, 11923–11927.

    Article  CAS  Google Scholar 

  • Graur, D., Zheng, Y., Price, N., Azevedo, R. B. R., Zufall, R. A., & Elhaik, E. (2013). On the immortality of television sets: ‘Function’ in the human genome according to the evolution-free gospel of ENCODE. Genome Biology and Evolution, 5, 578–590.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gregory, T. R. (2001). Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biological Reviews, 76, 65–101.

    Article  CAS  PubMed  Google Scholar 

  • Gregory, T. R. (2005). The evolution of the genome. Burlington: Elsevier Academic Press.

    Google Scholar 

  • Gregory, T. R. (2014). Animal genome size database. http://www.genomesize.com.

  • Gregory, T. R., Hebert, P. D. N., & Kolasa, J. (2000). Evolutionary implications of the relationship between genome size and body size in flatworms and copepods. Heredity, 84, 201–208.

    Article  PubMed  Google Scholar 

  • Gregory, T. R., & Johnston, J. S. (2008). Genome size diversity in the family Drosophilidae. Heredity, 101, 228–238.

    Article  CAS  PubMed  Google Scholar 

  • Hall, M. N., Raff, M., & Thomas, G. (Eds.). (2004). Cell growth; Control of cell size. Cold Spring Harbor, NY: Cold Harbor Laboratory Press.

    Google Scholar 

  • Hessen, D. O., Daufresne, M., & Leinaas, H. P. (2013). Temperature size relations from the cellular genomic perspective. Biological Reviews, 88, 476–489.

    Article  PubMed  Google Scholar 

  • Hessen, D. O., Jeyasingh, P. D., Neiman, M., & Weider, L. J. (2010). Genome streamlining and the elemental costs of growth. Trends in Ecology & Evolution, 25, 75–80.

    Article  Google Scholar 

  • Hessen, D. O., & Persson, J. (2009). Genome size as a determinant of growth and life-history traits in crustaceans. Biological Journal of the Linnean Society, 98, 393–399.

    Article  Google Scholar 

  • Jalal, M., Wojewodzic, M. W., Laane, C. M. M., & Hessen, D. O. (2013). Larger Daphnia at lower temperature; A role for cell size and genome configuration? Genome, 56, 511–519.

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski, J., Czarnoeski, M., & Danko, M. (2004). Can optimal resource allocation models explain why ectotherms grow larger in the cold? Integrative and Comparative Biology, 44, 480–493.

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski, J., Konarzewski, M., & Gawelczyk, A. T. (2003). Cell size as a link between noncoding DNA and metabolic rate scaling. Proceedings of National Academy of Sciences, 100, 14080–14085.

    Article  CAS  Google Scholar 

  • Li, W., Tucker, A. E., Sung, W., Kelley, T. W., & Lynch, M. (2009). Extensive, recent intron gains in Daphnia populations. Science, 326, 1260–1262.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, M. (2007). The origins of genome architecture. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Maciak, S., Janko, K., Kotusz, J., Choleva, L., Borori, A., Junchno, D., et al. (2011). Standard metabolic rate SMRI is inversely related to erythrocyte and genome size in allopolyploid fish of the Cobitis taenia hybrid complex. Functional Ecology, 25, 1072–1078.

    Article  Google Scholar 

  • McLaren, I. A., Sevigny, J. M., & Corkett, C. J. (1988). Body sizes, development rates, and genome sizes among Calanus species. Hydrobiologia, 167, 275–284.

    Article  Google Scholar 

  • Mousseau, T. A., & Roff, D. A. (1989). Adaptation to seasonality in a cricket: Patterns of phenotypic and genotypic variation in body size and diapause expression along a cline in season length. Evolution, 43, 1483–1496.

    Article  Google Scholar 

  • Orgel, L. E., & Crick, F. H. C. (1980). Selfish DNA: The ultimate parasite. Nature, 284, 604–607.

    Article  CAS  PubMed  Google Scholar 

  • Otto, S. P., & Whitton, J. (2000). Polyploid incidence and evolution. Annual Review of Genetics, 34, 401–437.

    Article  CAS  PubMed  Google Scholar 

  • Palazzo, A. F., & Gregory, T. R. (2014). The case for junk DNA. PLoS Genetics, 10, e1004351. doi:10.1371/journal.pgen.1004351.

    Article  PubMed Central  PubMed  Google Scholar 

  • Parfrey, L. W., Lahr, D. J., & Katz, L. A. (2008). The dynamic nature of eukaryotic genomes. Molecular Biology and Evolution, 25, 787–794.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rasch, E. M., & Wyngaard, G. A. (2006). Genome sizes of cyclopoid copepods Crustacea: Evidence of evolutionary constraint. Biological Journal of the Linnean Society, 87, 625–635.

    Article  Google Scholar 

  • Rees, D. J., Belzile, C., Glémet, H., & Dufresne, F. (2008). Large genomes among caridean shrimp. Genome, 51, 159–163.

    Article  CAS  PubMed  Google Scholar 

  • Roth, G., Blanke, J., & Wake, D. B. (1994). Cell size predicts morphological complexity in the brains of frogs and salamanders. Proceedings of National Academy of Sciences, 91, 4796–4800.

    Article  CAS  Google Scholar 

  • Savage, V. M., Allen, A. P., Brown, J. H., Gillooly, J. F., Herman, A. B., Woodruff, W. H., & West, G. B. (2007). Scaling of number, size, and metabolic rate of cells with body size in mammals. Proceedings of National Academy of Sciences, 104, 4718–4723.

    Article  CAS  Google Scholar 

  • Starostova, Z., Kubicka, L., Konarzewski, M., Kozlowski, J., & Kratochvil, L. (2009). Cell size but not genome size affects scaling of metabolic rate in eyelid geckos. The American Naturalist, 174, E100–E105.

    Article  PubMed  Google Scholar 

  • Stelzer, C. P., Riss, S., & Stadler, P. (2011). Genome size evolution at the speciation level: The cryptic species complex Brachionus plicatilis (Rotifera). BMC Evolutionary Biology, 11, 90.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stevenson, R. D., Hill, M. F., & Bryant, P. J. (1995). Organ and cell allometry in Hawaiian Drosophila: How to make a big fly. Proceedings of the Royal Society of London, Series B: Biological Sciences, 259, 105–110.

    Article  CAS  Google Scholar 

  • Vieira, C., Nardon, C., Arpin, C., Lepetit, D., & Biémont, C. (2002). Evolution of genome size in Drosophila. Is the invader’s genome being invaded by transposable elements? Molecular Biology and Evolution, 19, 1154–1161.

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov, A. E. (1997). Nucleotypic effect in homeotherms: Body-mass independent resting metabolic rate of passerine birds is related to genome size. Evolution, 51, 220–225.

    Article  Google Scholar 

  • Wagner, M., Durbin, E., & Buckley, L. (1998). RNA: DNA ratios as indicators of nutritional condition in the copepod Calanus finmarchicus. Marine Ecology Progress Series, 162, 173–181.

    Article  CAS  Google Scholar 

  • Weider, L. J. (1987). Life history variation among low-arctic clones of obligately parthenogenetic Daphnia pulex—A diploid–polyploid complex. Oecologia, 73, 251–256.

    Article  Google Scholar 

  • White, M. M., & McLaren, I. A. (2000). Copepod development rates in relation to genome size and 18S rDNA copy number. Genome, 43, 750–755.

    Article  CAS  PubMed  Google Scholar 

  • Wyngaard, G. A., Rasch, E. M., Manning, N. M., Gasser, K., & Domangue, R. (2005). The relationship between genome size, development rate, and body size in copepods. Hydrobiologia, 532, 123–137.

    Article  CAS  Google Scholar 

  • Xia, X. H. (1995). Body-temperature, rate of biosynthesis, and evolution of genome size. Molecular Biology and Evolution, 12, 834–842.

    CAS  PubMed  Google Scholar 

  • Zeh, D. W., Zeh, J. A., & Ischida, Y. (2009). Transposable elements and an epigenetic basis for punctuated equilibria. BioEssays, 3, 716–726.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dag O. Hessen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hessen, D.O. Noncoding DNA as a Phenotypic Driver. Evol Biol 42, 427–431 (2015). https://doi.org/10.1007/s11692-015-9335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-015-9335-6

Keywords

Navigation