Skip to main content
Log in

The Genome Strikes Back: The Evolutionary Importance of Defence Against Mobile Elements

Evolutionary Biology Aims and scope Submit manuscript

Abstract

Increasingly, we regard the genome as a site and source of genetic conflict. This fascinating ‘bottom-up’ view brings up appealing connections between genome biology and whole-organism ecology, in which populations of elements compete with one another in their genomic habitat. Unlike other habitats, though, a host genome has its own evolutionary interests and is often able to defend itself against molecular parasites. Most well-studied organisms employ strategies to protect their genomes against the harmful effects of genomic parasites, including methylation, various pathways of RNA interference, and more unusual tricks such as repeat induced point-mutation (RIP). These genome defence systems are not obscure biological curiosities, but fundamentally important to the integrity and cohesion of the genome, and exert a powerful influence on genome evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Agrawal, N., & Dasaradhi, P., et al. (2003). RNA interference: Biology, mechanism, and applications. Microbiology and Molecular Biology Reviews, 67(4), 657–688.

    Article  PubMed  CAS  Google Scholar 

  • Antonovics, J., & Abrams, J. (2004). Intratetrad mating and the evolution of linkage relationships. Evolution, 58(4), 72–709.

    Google Scholar 

  • Arkhipova, I., & Meselson, M. (2000). Transposable elements in sexual and ancient asexual taxa. Proceedings of the National Academy Sciences United States of America, 97(26), 14473–14477.

    Article  CAS  Google Scholar 

  • Arkhipova, I., & Meselson, M. (2004). Deleterious transposable elements and the extinction of asexuals. Bioessays, 27, 76–85.

    Article  CAS  Google Scholar 

  • Barlow, D. P. (1993) Methylation and imprinting: From host defense to gene regulation? Science, 260(5106), 309–310.

    Article  PubMed  CAS  Google Scholar 

  • Bergman, C. M., et al. (2006) Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila Melanogaster genome. Genome Biology, 7:R112. doi: 10.1186/Gb–2006–7–11–R112.

  • Bernstein, E., & Allis, C. (2005). RNA meets chromatin. Genes and Development, 19, 1635–1655.

    Article  PubMed  CAS  Google Scholar 

  • Braun, F. N., & Liberles, D. A. (2004). Repeat-modulated population genetic effects in fungal proteins. Journal of Molecular Evolution, 59, 97–102.

    Article  PubMed  CAS  Google Scholar 

  • Brookfield, J. F. Y. (1986). The population biology of transposable elements. Philosophical Transactions of the Royal Society of London Series B, 312(1154), 217–226.

    Article  PubMed  CAS  Google Scholar 

  • Brookfield, J. F. Y. (1991). Models of repression of transposition in P-M hybrid dysgenesis by P cytotype and by zygotically encoded repressor proteins. Genetics, 128, 471–486.

    PubMed  CAS  Google Scholar 

  • Brookfield, J. F. Y. (2005). The ecology of the genome: Mobile DNA elements and their hosts. Nature Reviews Genetics, 6(2), 128–136.

    Article  PubMed  CAS  Google Scholar 

  • Brookfield, J. F. Y., & Badge, R. M. (1997). Population genetics models of transposable elements. Genetica, 100, 281–294.

    Article  PubMed  CAS  Google Scholar 

  • Burt, A. (2003). Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proceedings of the Royal Society of London Series B-Biological Sciences, 270, 921–928.

    Article  CAS  Google Scholar 

  • Cambareri, E. B., Singer, M. J. et al. (1991). Recurrence of repeat-induced point mutation (RIP) in Neurospora crassa. Genetics, 127(4), 699–710.

    PubMed  CAS  Google Scholar 

  • Cameron, J., & Loh, E., et al. (1979). Evidence for transposition of dispersed repetitive DNA families in yeast. Cell, 16, 739–751.

    Article  PubMed  CAS  Google Scholar 

  • Chakalova, L., Debrand, E. et al. (2005). Replication and transcription: Shaping the landscape of the genome. Nature Reviews Genetics, 6, 669–677.

    Article  PubMed  CAS  Google Scholar 

  • Chan, S. W.-L. et al. (2005). Gardening the genome: DNA methylation in Arabidopsis Thaliana. Nature Reviews Genetics, 6, 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., Charlesworth, D. et al. (2003). The effects of genetic and geographic structure on neutral variation. Annual Review Of Ecology and Systematics, 34, 99–125.

    Article  Google Scholar 

  • Charlesworth, B., & Langley, C. H. (1989). The population genetics of drosophila transposable elements. Annual Review of Genetics, 23, 251–287.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, X. (1995). Structure and function of DNA methyltransferases. Annual Review of Biophysics and Biomolecular Structure, 24, 293–318.

    Article  PubMed  CAS  Google Scholar 

  • Clark, J. B., & Kidwell, M. G. (1997). A phylogenetic perspective on P transposable element evolution in Drosophila. Proceedings of the National Academy of Sciences USA, 11428–11433.

  • Clutterbuck, A. (2004). MATE transposable elements in Aspergillus nidulans: Evidence of repeat-induced point mutation. Fungal Genetics and Biology, 41, 308–316.

    Article  PubMed  CAS  Google Scholar 

  • Colot, V., & Rossignol, J.-L. (1999). Eukaryotic DNA methylation as an evolutionary device. Bioessays, 21, 402–411.

    Article  PubMed  CAS  Google Scholar 

  • Daboussi, M.-J., & Capy, P. (2003). Transposablde elements in filamentous fungi. Annual Review Of Microbiology, 57, 275–299.

    Article  PubMed  CAS  Google Scholar 

  • Daboussi, M.-J., Daviere, J.-M. et al. (2002). Evolution of the Fot1 transposons in the genus Fusarium: Discontinuous distribution and epigenetic inactivation. Molecular Biology and Evolution, 19, 510–520.

    PubMed  CAS  Google Scholar 

  • Daniels, S. B. et al. (1990). Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics, 124, 339–255.

    PubMed  CAS  Google Scholar 

  • Deininger, P. L., Batzer, M. A. et al. (1992). Master genes in mammalian repetitive DNA amplification. Trends in Genetics, 8(9), 307–311.

    Article  PubMed  CAS  Google Scholar 

  • Dimitri, P., Corradini, N., et al. (2005). The paradox of functional heterochromatin. Bioessays, 27, 29–41.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, R. J., & Brookfield, J. F. Y. (2003). Transiently beneficial insertions could maintain mobile DNA sequences in variable environments. Molecular Biology and Evolution, 20, 30–37.

    Article  PubMed  CAS  Google Scholar 

  • Engels, W. (1997). Invasions of P elements. Genetics, 145, 11–15.

    PubMed  CAS  Google Scholar 

  • Fincham, J. R. S., et al. (1989). Premeiotic disruption of duplicated and triplicated copies of the Neurospora crassa Am (Glutamate Dehydrogenase) gene. Current Genetics, 15, 327–334.

    Article  PubMed  CAS  Google Scholar 

  • Finnegan, D. J. (1992) Transposable elements. Current Opinion in Genetics and Development, 2(6), 861–867.

    Article  PubMed  CAS  Google Scholar 

  • Freitag, M., & Selker, E. U. (2005). Controlling DNA methylation: Many roads to one modification. Current Opinion in Genetics and Development, 15, 191–199.

    Article  PubMed  CAS  Google Scholar 

  • Galagan, J. A., Calvo, S. E., et al. (2003). The genome sequence of the filamentous fungus Neurospora crassa. Nature, 422, 859–868.

    Article  PubMed  CAS  Google Scholar 

  • Galagan, J. A., & Selker E. U. (2004). RIP: The evolutionary cost of genome defense. Trends in Genetics, 20(9), 417–423.

    Article  PubMed  CAS  Google Scholar 

  • Goddard, M. R., & Burt, A. (1999). Recurrent invasion and extinction of a selfish gene. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 13880–13885.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez, A., & Sommer, R. (2004). Evolution of Dnmt-2 and Mbd-2-like genes in the free-living Nematodes pristionchus pacificus, Caenorhabditis Elegans and Caenorhabditis Briggsae. Nucleic Acids Research, 32, 6388–6396.

    Article  PubMed  CAS  Google Scholar 

  • Hamann, A., Feller, F., et al. (2000). The degenerate DNA transposon Pat and repeat-induced point mutation (RIP) in Podospora anserina. Molecular and General Genetics, 263, 1061–1069.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, I. M. (1994). Selfish DNA as a method of pest control. Philosophical Transactions of the Royal Society of London Series B, 344, 313–324.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, I. M. (1999). The costs of sex due to deleterious intracellular parasites. Journal Of Evolutionary Biology, 12(1), 177–183.

    Article  Google Scholar 

  • Hirochika, H., Okamoto, H. et al. (2000). Silencing of retrotransposons in arabidopsis and reactivation by the Ddm1 mutation. Plant Cell, 12, 357–368.

    Article  PubMed  CAS  Google Scholar 

  • Hood, M. E. (2005). Repetitive DNA in the automictic fungus Microbotryum violaceum. Genetica, 124(1), 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, G. D. D., Hurst, L. D. et al. (1992). Intranuclear conflict and its role in evolution. Trends in Ecology and Evolution, 7(11), 373–378.

    Article  Google Scholar 

  • Huttenhofer, A. et al. (2005). Non-coding RNAs: Hope or hype? Trends of Genetics, 21, 289–297.

    Article  CAS  Google Scholar 

  • Ikeda, K., Nakayashiki, H. et al. (2002). Repeat-induced point mutation (RIP) in Magnaporthe grisea: Implications for its sexual cycle in the natural field environment. Molecular Microbiology, 45(5), 1355–1364.

    Article  PubMed  CAS  Google Scholar 

  • Janowski, B. A. et al. (2007). Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nature Chemical Biology, 3, 166–173.

    Article  PubMed  CAS  Google Scholar 

  • Jia, D., Jurkowska R. Z., Zhang, X., Jeltsch, A., & Cheng, X. (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature, 449, 248–251.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, J. M., Edwards, S. et al. (2005). Dark matter in the genome: Evidence of widespread transcrition detected by microarray tiling experiments. Trends in Genetics, 21(2), 93–104.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, L. J. et al. (2005). The evolution of intratetrad mating rates. Evolution, 59(12), 2525–2532.

    PubMed  Google Scholar 

  • Jones, P. A., & Takai, D. (2001). The role of DNA methylation in mammalian epigenetics. Science, 293, 1068–1070.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, I. K., & Mcdonald, J. F. (1999). Tempo and mode of Ty element evolution in Saccharomyces cerevisiae. Genetics, 151, 1341–1351.

    PubMed  CAS  Google Scholar 

  • Josse, T., Teysset, L., et al. (2007). Telomeric trans-silencing: An epigenetic repression combining RNA silencing and heterochromatin formation. PLOS Genetics. doi: 10.1371/Journal.Pgen.0030158.Eor.

  • Kato, M., Takashima, K. et al. (2004). Epigenetic control of CACTA transposon mobility in Arabidopsis Thaliana. Genetics, 168, 961–969.

    Article  PubMed  CAS  Google Scholar 

  • Kazazian, H. H. (1998) Mobile elements and disease. Current Opinion in Genetics Development, 8(3), 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Kidwell, M. G., & Lisch, D. R. (2001). Transposable elements, parasitic DNA and genome evolution. Evolution, 55(1), 1–24.

    PubMed  CAS  Google Scholar 

  • Kinsey, J. A., & Helber, J. (1989). Isolation of a transposable element from Neurospora crassa. Proceedings of the National Academy of Sciences United States of America, 86, 1929–1933.

    Article  CAS  Google Scholar 

  • Klose, R. J., & Bird, A. P. (2006) Genomic DNA methylation: The mark and its mediators. Trends of Biochemical Science, 31, 89–97.

    Article  CAS  Google Scholar 

  • Koufopanou, V., Goddard, M. R. et al. (2002). Adaptation for horizontal transfer in a homing endonuclease. Molecular Biology and Evolution, 19(3), 239–246.

    PubMed  CAS  Google Scholar 

  • Langley, C. H., Montgomery, E. et al. (1988). On the role of unequal exchange in the containment of transposable element copy number. Genetical Research, 52(3), 223–235.

    Article  PubMed  CAS  Google Scholar 

  • Levine E, Zhang Z, Kuhlman T, Hwa, T (2007) Quantitative characteristics of gene regulation by small RNA. PLoS Biology, 5(9), e229.

    Article  PubMed  CAS  Google Scholar 

  • Li, E. et al. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 69, 915–926.

    Article  PubMed  CAS  Google Scholar 

  • Martello, G. et al. (2007) MicroRNA control of nodal signalling. Nature, 449, 183–189.

    Article  PubMed  CAS  Google Scholar 

  • Mette, M., Van Der Winden, J. et al. (2002). Short RNAs can identify new candidate transposable element families in Arabidopsis. Plant Physiology, 130, 6–9.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, J., Victor, E. et al. (2007). Why don’t all whales have cancer? A novel hypothesis resolving Peto’s Paradox. Integrative and Comparative Biology, 47, 317–328.

    Article  Google Scholar 

  • Naumov, G. I., Naumova, E. S., & Sniegowski, P. D. (1998). Saccharomyces paradoxus and Saccharomyces cerevisiae are associated with exudates of North American oaks. Canadian Journal of Microbiology, 44(11), 1045–1050.

    Article  PubMed  CAS  Google Scholar 

  • Nee, S., & Smith, J. M. (1990). The evolutionary biology of molecular parasites. Parasitology, 100, S5–S18.

    Article  PubMed  Google Scholar 

  • Ng, H.-H., & Bird A. (1999). DNA methylation and chromatin modification. Current Opinion in Genetics and Development, 9, 158–163.

    Article  PubMed  CAS  Google Scholar 

  • Noubissi, F. K., Aparna, K. et al. (2001). Evidence for dominant suppression of repeat-induced point mutation (RIP) in crosses with the wild-isolated Neurospora crassa strains sugartown and adiopodoume-7. Journal of Genetics, 80, 55–61.

    Article  PubMed  CAS  Google Scholar 

  • Nuzhdin, S. V., & Petrov D. A. (2003). Transposable elements in clonal lineages: Lethal hangover from sex. Biological Journal of the Linnaean Society, 79, 33–41.

    Article  Google Scholar 

  • Petrov, D. A., & Hartl D. L. (1997). Trash DNA is what gets thrown away:high rate of DNA loss in Drosophila. Gene, 205, 279–289.

    Article  PubMed  CAS  Google Scholar 

  • Promislow, D. et al. (1999) Genomic demography: A life-history analysis of transposable element evolution. Proceedings of the Royal Society of London Series B, 266, 1555–1560.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H. M. (1995). The Tc1-mariner superfamily of transposons in animals. Journal of Insect Physiology, 41, 99–105.

    Article  CAS  Google Scholar 

  • Rowold, D. J., & Herrera, R. J. (2000). Alu elements and the human genome. Genetica, 108(1), 57–72.

    Article  PubMed  CAS  Google Scholar 

  • Selker, E. U. (1990). Premeiotic instability of repeated sequences in Neurospora crassa. Annual Review of Genetics, 24, 579–613.

    Article  PubMed  CAS  Google Scholar 

  • Selker E. U. (2002). Repeat-induced gene silencing in fungi. Advances in Genetics, 46, 439–450.

    Article  PubMed  CAS  Google Scholar 

  • Selker, E. U., & Garrett P. (1988). DNA sequence duplications trigger gene inactivation in Neurospora crassa. Proceedings of National Academy Sciences United States of America, 85, 6870–6874.

    Article  CAS  Google Scholar 

  • Suzuki S., Ono R., Narita T., Pask A. J., Shaw G., et al. (2007) Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genetics, 3(4), e55.

    Article  PubMed  CAS  Google Scholar 

  • Vastenhouw, N., Fischer, S. et al. (2003). A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Current Biology, 13, 1311–1316.

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov, A. E. (2003). Selfish DNA is Maladaptive; evidence from the plant red list. Trends in Genetics, 19(11), 609–614.

    Article  PubMed  CAS  Google Scholar 

  • Yao, M.-C., & Chao, L.-J. (2005). RNA-guided DNA deletion in tetrahymena: An RNAi-based mechanism for programmed genome rearrangements. Annual Review of Genetics, 39, 537–559.

    Article  PubMed  CAS  Google Scholar 

  • Yi, S., & Streelman, T. (2005). Genome size is negatively correlated with effective population size in ray-finned fish. Trends In Genetics, 21, 643–646.

    Article  PubMed  CAS  Google Scholar 

  • Yoder, J. A. (1997). Cytosine methylation and the ecology of intragenomic parasites. Trends of Genetics, 13(8), 335–340.

    Article  CAS  Google Scholar 

  • Zilberman, D. et al. (2003). Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Current Biology, 14, 1214–1220.

    Article  CAS  Google Scholar 

  • Zhang, X., et al. (2006). Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell, 126(6), 1189–1201.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

I thank an anonymous referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise J. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, L.J. The Genome Strikes Back: The Evolutionary Importance of Defence Against Mobile Elements. Evol Biol 34, 121–129 (2007). https://doi.org/10.1007/s11692-007-9012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-007-9012-5

Keywords

Navigation