Skip to main content
Log in

iTRAQ-based quantitative proteomic analysis on differentially expressed proteins of rat mandibular condylar cartilage induced by reducing dietary loading

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

As muscle activity during growth is considerably important for mandible quality and morphology, reducing dietary loading directly influences the development and metabolic activity of mandibular condylar cartilage (MCC). However, an overall investigation of changes in the protein composition of MCC has not been fully described in literature. To study the protein expression and putative signaling in vivo, we evaluated the structural changes of MCC and differentially expressed proteins induced by reducing functional loading in rat MCC at developmental stages. Isobaric tag for relative and absolute quantitation-based 2D nano-high performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) technologies were used. Global protein profiling, KEGG and PANTHER pathways, and functional categories were analyzed. Consequently, histological and tartrate-resistant acid phosphatase staining indicated the altered histological structure of condylar cartilage and increased bone remodeling activity in hard-diet group. A total of 805 differentially expressed proteins were then identified. GO analysis revealed a significant number of proteins involved in the metabolic process, cellular process, biological regulation, localization, developmental process, and response to stimulus. KEGG pathway analysis also suggested that these proteins participated in various signaling pathways, including calcium signaling pathway, gap junction, ErbB signaling pathway, and mitogen-activated protein kinase signaling pathway. Collagen types I and II were further validated by immunohistochemical staining and Western blot analysis. Taken together, the present study provides an insight into the molecular mechanism of regulating condylar growth and remodeling induced by reducing dietary loading at the protein level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cianferotti L, Brandi ML. Muscle-bone interactions: basic and clinical aspects. Endocrine 2014; 45(2): 165–177

    Article  PubMed  CAS  Google Scholar 

  2. Vreeke M, Langenbach GE, Korfage JA, Zentner A, Grünheid T. The masticatory system under varying functional load. Part 1: Structural adaptation of rabbit jaw muscles to reduced masticatory load. Eur J Orthod 2011; 33(4): 359–364

    PubMed  Google Scholar 

  3. Hichijo N, Kawai N, Mori H, Sano R, Ohnuki Y, Okumura S, Langenbach GE, Tanaka E. Effects of the masticatory demand on the rat mandibular development. J Oral Rehabil 2014; 41(8): 581–587

    Article  PubMed  CAS  Google Scholar 

  4. Shimizu Y, Ishida T, Hosomichi J, Kaneko S, Hatano K, Ono T. Soft diet causes greater alveolar osteopenia in the mandible than in the maxilla. Arch Oral Biol 2013; 58(8): 907–911

    Article  PubMed  Google Scholar 

  5. Yonemitsu I, Muramoto T, Soma K. The influence of masseter activity on rat mandibular growth. Arch Oral Biol 2007; 52(5): 487–493

    Article  PubMed  Google Scholar 

  6. Ödman A, Mavropoulos A, Kiliaridis S. Do masticatory functional changes influence the mandibular morphology in adult rats. Arch Oral Biol 2008; 53(12): 1149–1154

    Article  PubMed  Google Scholar 

  7. Grünheid T, Langenbach GE, Korfage JA, Zentner A, van Eijden TM. The adaptive response of jaw muscles to varying functional demands. Eur J Orthod 2009; 31(6): 596–612

    Article  PubMed  Google Scholar 

  8. Grünheid T, Langenbach GE, Brugman P, Everts V, Zentner A. The masticatory system under varying functional load. Part 2: Effect of reduced masticatory load on the degree and distribution of mineralization in the rabbit mandible. Eur J Orthod 2011; 33(4): 365–371

    PubMed  Google Scholar 

  9. Burn AK, Herring SW, Hubbard R, Zink K, Rafferty K, Lieberman DE. Dietary consistency and the midline sutures in growing pigs. Orthod Craniofac Res 2010; 13(2): 106–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kawai N, Sano R, Korfage JA, Nakamura S, Kinouchi N, Kawakami E, Tanne K, Langenbach GE, Tanaka E. Adaptation of rat jaw muscle fibers in postnatal development with a different food consistency: an immunohistochemical and electromyographic study. J Anat 2010; 216(6): 717–723

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rawlinson SC, Boyde A, Davis GR, Howell PG, Hughes FJ, Kingsmill VJ. Ovariectomy vs. hypofunction: their effects on rat mandibular bone. J Dent Res 2009; 88(7): 615–620

    PubMed  CAS  Google Scholar 

  12. Kingsmill VJ, Boyde A, Davis GR, Howell PG, Rawlinson SC. Changes in bone mineral and matrix in response to a soft diet. J Dent Res 2010; 89(5): 510–514

    Article  PubMed  CAS  Google Scholar 

  13. Sakurai M, Yonemitsu I, Muramoto T, Soma K. Effects of masticatory muscle force on temporomandibular joint disc growth in rats. Arch Oral Biol 2007; 52(12): 1186–1193

    Article  PubMed  Google Scholar 

  14. Enomoto A, Watahiki J, Nampo T, Irie T, Ichikawa Y, Tachikawa T, Maki K. Mastication markedly affects mandibular condylar cartilage growth, gene expression, and morphology. Am J Orthod Dentofacial Orthop 2014; 146(3): 355–363

    Article  PubMed  Google Scholar 

  15. Kuroda S, Tanimoto K, Izawa T, Fujihara S, Koolstra JH, Tanaka E. Biomechanical and biochemical characteristics of the mandibular condylar cartilage. Osteoarthritis Cartilage 2009; 17(11): 1408–1415

    Article  PubMed  CAS  Google Scholar 

  16. Stankovic S, Vlajkovic S, Boškovic M, Radenkovic G, Antic V, Jevremovic D. Morphological and biomechanical features of the temporomandibular joint disc: an overview of recent findings. Arch Oral Biol 2013; 58(10): 1475–1482

    Article  PubMed  Google Scholar 

  17. Papachristou D, Pirttiniemi P, Kantomaa T, Agnantis N, Basdra EK. Fos- and Jun-related transcription factors are involved in the signal transduction pathway of mechanical loading in condylar chondrocytes. Eur J Orthod 2006; 28(1): 20–26

    Article  PubMed  Google Scholar 

  18. Von den Hoff JW, Delatte M. Interplay of mechanical loading and growth factors in the mandibular condyle. Arch Oral Biol 2008; 53(8): 709–715

    Article  PubMed  CAS  Google Scholar 

  19. Wilson R, Norris EL, Brachvogel B, Angelucci C, Zivkovic S, Gordon L, et al. Changes in the chondrocyte and extracellular matrix proteome during post-natal mouse cartilage development. Mol Cell Proteomics 2012;11(1):M111 014159

    Article  PubMed  CAS  Google Scholar 

  20. Kobayashi-Miura M, Miura T, Osago H, Yamaguchi Y, Aoyama T, Tanabe T, Matsumoto KI, Fujita Y. Rat articular cartilages change their tissue and protein compositions during perinatal period. Anat Histol Embryol 2016; 45(1): 9–18

    Article  PubMed  CAS  Google Scholar 

  21. Hsueh MF, Khabut A, Kjellström S, Önnerfjord P, Kraus VB. Elucidating the molecular composition of cartilage by proteomics. J Proteome Res 2016; 15(2): 374–388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Li H, Yang HS, Wu TJ, Zhang XY, Jiang WH, Ma QL, Chen YX, Xu Y, Li S, Hua ZC. Proteomic analysis of early-response to mechanical stress in neonatal rat mandibular condylar chondrocytes. J Cell Physiol 2010; 223(3): 610–622

    PubMed  CAS  Google Scholar 

  23. Evans C, Noirel J, Ow SY, Salim M, Pereira-Medrano AG, Couto N, Pandhal J, Smith D, Pham TK, Karunakaran E, Zou X, Biggs CA, Wright PC. An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 2012; 404(4): 1011–1027

  24. Basak T, Bhat A, Malakar D, Pillai M, Sengupta S. In-depth comparative proteomic analysis of yeast proteome using iTRAQ and SWATH based MS. Mol Biosyst 2015; 11(8): 2135–2143

    Article  PubMed  CAS  Google Scholar 

  25. Glibert P, Van Steendam K, Dhaenens M, Deforce D. iTRAQ as a method for optimization: enhancing peptide recovery after gel fractionation. Proteomics 2014; 14(6): 680–684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tabb DL, Wang X, Carr SA, Clauser KR, Mertins P, Chambers MC, Holman JD, Wang J, Zhang B, Zimmerman LJ, Chen X, Gunawardena HP, Davies SR, Ellis MJ, Li S, Townsend RR, Boja ES, Ketchum KA, Kinsinger CR, Mesri M, Rodriguez H, Liu T, Kim S, McDermott JE, Payne SH, Petyuk VA, Rodland KD, Smith RD, Yang F, Chan DW, Zhang B, Zhang H, Zhang Z, Zhou JY, Liebler DC. Reproducibility of differential proteomic technologies in CPTAC fractionated xenografts. J Proteome Res 2016; 15(3): 691–706

    Article  PubMed  CAS  Google Scholar 

  27. Wang H, Alvarez S, Hicks LM. Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two Chlamydomonas reinhardtii strains of interest for biofuels engineering. J Proteome Res 2012; 11(1): 487–501

    Article  PubMed  CAS  Google Scholar 

  28. Aggarwal K, Choe LH, Lee KH. Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomics Proteomics 2006; 5(2): 112–120

    Article  CAS  Google Scholar 

  29. Papadopoulou AK, Papachristou DJ, Chatzopoulos SA, Pirttiniemi P, Papavassiliou AG, Basdra EK. Load application induces changes in the expression levels of Sox-9, FGFR-3 and VEGF in condylar chondrocytes. FEBS Lett 2007; 581(10): 2041–2046

    Article  PubMed  CAS  Google Scholar 

  30. Lei Q, Chen J, Huang W, Wu D, Lin H, Lai Y. Proteomic analysis of the effect of extracellular calcium ions on human mesenchymal stem cells: implications for bone tissue engineering. Chem Biol Interact 2015; 233: 139–146

    Article  PubMed  CAS  Google Scholar 

  31. Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4(1): 44–57

    Article  CAS  Google Scholar 

  32. Hashimoto K, Goto S, Kawano S, Aoki-Kinoshita KF, Ueda N, Hamajima M, Kawasaki T, Kanehisa M. KEGG as a glycome informatics resource. Glycobiology 2006; 16(5): 63R–70R PMID:16014746

    Article  PubMed  CAS  Google Scholar 

  33. Jiao K, Dai J, Wang MQ, Niu LN, Yu SB, Liu XD. Age- and sexrelated changes of mandibular condylar cartilage and subchondral bone: a histomorphometric and micro-CT study in rats. Arch Oral Biol 2010; 55(2): 155–163

    Article  PubMed  Google Scholar 

  34. Farias-Neto A, Martins AP, Sánchez-Ayala A, Rabie AB, Novaes PD, Rizzatti-Barbosa CM. The effect of posterior tooth loßs on the expression of type II collagen, IL-1ß and VEGF in the condylar cartilage of growing rats. Arch Oral Biol 2012; 57(11): 1551–1557

    Article  PubMed  CAS  Google Scholar 

  35. Li QF, Rabie AB. A new approach to control condylar growth by regulating angiogenesis. Arch Oral Biol 2007; 52(11): 1009–1017

    Article  PubMed  CAS  Google Scholar 

  36. Zhang M, Chen YJ, Ono T, Wang JJ. Crosstalk between integrin and G protein pathways involved in mechanotransduction in mandibular condylar chondrocytes under pressure. Arch Biochem Biophys 2008; 474(1): 102–108

    Article  PubMed  CAS  Google Scholar 

  37. Singh M, Detamore MS. Biomechanical properties of the mandibular condylar cartilage and their relevance to the TMJ disc. J Biomech 2009; 42(4): 405–417

    Article  PubMed  CAS  Google Scholar 

  38. Pirttiniemi P, Kantomaa T, Sorsa T. Effect of decreased loading on the metabolic activity of the mandibular condylar cartilage in the rat. Eur J Orthod 2004; 26(1): 1–5

    Article  PubMed  Google Scholar 

  39. Naveh GR, Lev-Tov Chattah N, Zaslansky P, Shahar R, Weiner S. Tooth-PDL-bone complex: response to compressive loads encountered during mastication—a review. Arch Oral Biol 2012; 57(12): 1575–1584

    Article  PubMed  Google Scholar 

  40. Willems NM, Langenbach GE, Everts V, Zentner A. The microstructural and biomechanical development of the condylar bone: a review. Eur J Orthod 2014; 36(4): 479–485

    Article  PubMed  Google Scholar 

  41. Kiliaridis S, Thilander B, Kjellberg H, Topouzelis N, Zafiriadis A. Effect of low masticatory function on condylar growth: a morphometric study in the rat. Am J Orthod Dentofacial Orthop 1999; 116(2): 121–125

    Article  PubMed  CAS  Google Scholar 

  42. Liu Q, Gibson MP, Sun H, Qin C. Dentin sialophosphoprotein (DSPP) plays an essential role in the postnatal development and maintenance of mouse mandibular condylar cartilage. J Histochem Cytochem 2013; 61(10): 749–758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gredes T, Mack H, Spassov A, Kunert-Keil C, Steele M, Proff P, Mack F, Gedrange T. Changes in condylar cartilage after anterior mandibular displacement in juvenile pigs. Arch Oral Biol 2012; 57(6): 594–598

    Article  PubMed  Google Scholar 

  44. Li XB, Zhou Z, Luo SJ. Expreßsions of IGF-1 and TGF-ß 1 in the condylar cartilages of rapidly growing rats. Chin J Dent Res 1998; 1(2): 52–56

    PubMed  CAS  Google Scholar 

  45. Hinton RJ, Serrano M, So S. Differential gene expression in the perichondrium and cartilage of the neonatal mouse temporomandibular joint. Orthod Craniofac Res 2009; 12(3): 168–177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Priam S, Bougault C, Houard X, Gosset M, Salvat C, Berenbaum F, Jacques C. Identification of soluble 14-3-32 as a novel subchondral bone mediator involved in cartilage degradation in osteoarthritis. Arthritis Rheum 2013; 65(7): 1831–1842

    Article  PubMed  CAS  Google Scholar 

  47. Sun Y, Gandhi V, Prasad M, Yu W, Wang X, Zhu Q, Feng JQ, Hinton RJ, Qin C. Distribution of small integrin-binding ligand, Nlinked glycoproteins (SIBLING) in the condylar cartilage of rat mandible. Int J Oral Maxillofac Surg 2010; 39(3): 272–281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Papachristou DJ, Papachroni KK, Basdra EK, Papavassiliou AG. Signaling networks and transcription factors regulating mechanotransduction in bone. BioEssays 2009; 31(7): 794–804

    Article  PubMed  CAS  Google Scholar 

  49. Mariani E, Pulsatelli L, Facchini A. Signaling pathways in cartilage repair. Int J Mol Sci 2014; 15(5): 8667–8698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hsueh MF, Önnerfjord P, Kraus VB. Biomarkers and proteomic analysis of osteoarthritis. Matrix Biol 2014; 39: 56–66

    Article  PubMed  CAS  Google Scholar 

  51. Sun H, Li M, Gong L, Liu M, Ding F, Gu X. iTRAQ-coupled 2D LC-MS/MS analysis on differentially expressed proteins in denervated tibialis anterior muscle of Rattus norvegicus. Mol Cell Biochem 2012; 364(1-2): 193–207

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the laboratory staff for the help. This research was funded by the National Science Fund for Distinguished Young Scholars of China (No. 81225006) and Shanghai Jiao Tong University School of Medicine (No.14XJ10010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinquan Jiang or Yiming Gao.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Xie, Y., Wei, L. et al. iTRAQ-based quantitative proteomic analysis on differentially expressed proteins of rat mandibular condylar cartilage induced by reducing dietary loading. Front. Med. 11, 97–109 (2017). https://doi.org/10.1007/s11684-016-0496-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-016-0496-1

Keywords

Navigation