Skip to main content
Log in

Cognitive activity, cognitive function, and brain diffusion characteristics in old age

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The objective of this work was to test the hypotheses that a) more frequent cognitive activity in late life is associated with higher brain diffusion anisotropy and lower trace of the diffusion tensor, and b) brain diffusion characteristics partially mediate the association of late life cognitive activity with cognition. As part of a longitudinal cohort study, 379 older people without dementia rated their frequency of participation in cognitive activities, completed a battery of cognitive function tests, and underwent diffusion tensor imaging. We used tract-based spatial statistics to test the association between late life cognitive activity and brain diffusion characteristics. Clusters with statistically significant findings defined regions of interest in which we tested the hypothesis that diffusion characteristics partially mediate the association of late life cognitive activity with cognition. More frequent cognitive activity in late life was associated with higher level of global cognition after adjustment for age, sex, education, and indicators of early life cognitive enrichment (p = 0.001). More frequent cognitive activity was also related to higher fractional anisotropy in the left superior and inferior longitudinal fasciculi, left fornix, and corpus callosum, and lower trace in the thalamus (p < 0.05, FWE-corrected). After controlling for fractional anisotropy or trace from these regions, the regression coefficient for the association of late life cognitive activity with cognition was reduced by as much as 26 %. These findings suggest that the association of late life cognitive activity with cognition may be partially mediated by brain diffusion characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arfanakis, K., Fleischman, D. A., Grisot, G., Barth, C. M., Varentsova, A., Morris, M. C., et al. (2013). Systemic inflammation in non-demented elderly human subjects: brain microstructure and cognition. PLoS ONE, 8, e73107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett, D. A., Schneider, J. A., Aggarwal, N. T., Arvanitakis, Z., Shah, R. C., Kelly, J. F., et al. (2006a). Decision rules guiding the clinical diagnosis of Alzheimer’s disease in two community-based cohort studies compared to standard practice in a clinic-based cohort study. Neuroepidemiology, 27, 169–176.

    Article  PubMed  Google Scholar 

  • Bennett, D. A., Schneider, J. A., Arvanitakis, Z., Kelly, J. F., Aggarwal, N. T., Shah, R. C., et al. (2006b). Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology, 66, 1837–1844.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, D. A., Schneider, J. A., Buchman, A. S., Barnes, L. L., Boyle, P. A., & Wilson, R. S. (2012). Overview and findings from the rush memory and aging project. Current Alzheimer Research, 9, 646–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumenfeld-Katzir, T., Pasternak, O., Dagan, M., & Assaf, Y. (2011). Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS ONE, 6, e20678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle, P. A., Wilson, R. S., Aggarwal, N. T., Tang, Y., & Bennett, D. A. (2006). Mild cognitive impairment: risk of Alzheimer’s disease and rate of cognitive decline. Neurology, 67, 441–445.

    Article  CAS  PubMed  Google Scholar 

  • Bucur, B., Madden, D. J., Spaniol, J., Provenzale, J. M., Cabeza, R., White, L. E., et al. (2008). Age-related slowing of memory retrieval: contributions of perceptual speed and cerebral white matter integrity. Neurobiology of Aging, 29, 1070–1079.

    Article  PubMed  Google Scholar 

  • Buschkuehl, M., Jaeggi, S. M., & Jonides, J. (2012). Neuronal effects following working memory training. Developmental Cognitive Neuroscience, 2(Suppl 1), S167–179.

    Article  PubMed  Google Scholar 

  • Chanraud, S., Zahr, N., Sullivan, E. V., & Pfefferbaum, A. (2010). MR diffusion tensor imaging: a window into white matter integrity of the working brain. Neuropsychology Review, 20, 209–225.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman, S. B., Aslan, S., Spence, J. S., Hart, J. J., Jr., Bartz, E. K., Didehbani, N., et al. (2015). Neural mechanisms of brain plasticity with complex cognitive training in healthy seniors. Cerebral Cortex, 25, 396–405.

    Article  PubMed  Google Scholar 

  • Engvig, A., Fjell, A. M., Westlye, L. T., Moberget, T., Sundseth, Ø., Larsen, V. A., et al. (2012). Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study. Human Brain Mapping, 33, 2390–2406.

    Article  PubMed  Google Scholar 

  • Ghisletta, P., Bickel, J. F., & Lövdén, M. (2006). Does activity engagement protect against cognitive decline in old age? Methodological and analytical considerations. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 61, 253–261.

    Article  Google Scholar 

  • Gow, A. J., Bastin, M. E., Muñoz Maniega, S., Valdés Hernández, M. C., Morris, Z., Murray, C., et al. (2012). Neuroprotective lifestyles and the aging brain: activity, atrophy, and white matter integrity. Neurology, 79, 1802–1808.

    Article  PubMed  Google Scholar 

  • Hall, C. B., Lipton, R. B., Sliwinski, M., Katz, M. J., Derby, C. A., & Verghese, J. (2009). Cognitive activities delay onset of memory decline in persons who develop dementia. Neurology, 73, 356–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honer, W. G., Barr, A. M., Sawada, K., Thornton, A. E., Morris, M. C., Leurgans, S. E., et al. (2012). Cognitive reserve, presynaptic proteins and dementia in the elderly. Translational Psychiatry, 2, e114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hultsch, D. F., Hertzog, C., Small, B. J., & Dixon, R. A. (1999). Use it or lose it: engaged lifestyle as a buffer of cognitive decline in aging? Psychology and Aging, 14, 245–263.

    Article  CAS  PubMed  Google Scholar 

  • Imfeld, A., Oechslin, M. S., Meyer, M., Loenneker, T., & Jancke, L. (2009). White matter plasticity in the corticospinal tract of musicians: a diffusion tensor imaging study. NeuroImage, 46, 600–607.

    Article  PubMed  Google Scholar 

  • Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P., et al. (1988). Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology, 23, 138–144.

    Article  CAS  PubMed  Google Scholar 

  • Le Bihan, D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., et al. (2001). Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging, 13, 534–546.

    Article  PubMed  Google Scholar 

  • Lee, B., Park, J. Y., Jung, W. H., Kim, H. S., Oh, J. S., Choi, C. H., et al. (2010). White matter neuroplastic changes in long-term trained players of the game of “Baduk” (GO): a voxel-based diffusion-tensor imaging study. NeuroImage, 52, 9–19.

    Article  PubMed  Google Scholar 

  • Lövdén, M., Bodammer, N. C., Kühn, S., Kaufmann, J., Schütze, H., Tempelmann, C., et al. (2010). Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia, 48, 3878–3883.

    Article  PubMed  Google Scholar 

  • Makris, N., Kennedy, D. N., McInerney, S., Sorensen, A. G., Wang, R., Caviness, V. S., Jr., et al. (2005). Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cerebral Cortex, 15, 854–869.

    Article  PubMed  Google Scholar 

  • Markham, J. A., & Greenough, W. T. (2004). Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biology, 1, 351–363.

    Article  PubMed  PubMed Central  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology, 34, 939–944.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, R. E., Anderson, E. J., & Husain, M. (2010). Expert cognitive control and individual differences associated with frontal and parietal white matter microstructure. Journal of Neuroscience, 30, 17063–17067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudebeck, S. R., Scholz, J., Millington, R., Rohenkohl, G., Johansen-Berg, H., & Lee, A. C. (2009). Fornix microstructure correlates with recollection but not familiarity memory. Journal of Neuroscience, 29, 14987–14992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagi, Y., Tavor, I., Hofstetter, S., Tzur-Moryosef, S., Blumenfeld-Katzir, T., & Assaf, Y. (2012). Learning in the fast lane: new insights into neuroplasticity. Neuron, 73, 1195–1203.

    Article  CAS  PubMed  Google Scholar 

  • Schlegel, A. A., Rudelson, J. J., & Tse, P. U. (2012). White matter structure changes as adults learn a second language. Journal of Cognitive Neuroscience, 24, 1664–1670.

    Article  PubMed  Google Scholar 

  • Schooler, C., & Mulatu, M. S. (2001). The reciprocal effects of leisure time activities and intellectual functioning in older people: a longitudinal analysis. Psychology and Aging, 16, 466–482.

    Article  CAS  PubMed  Google Scholar 

  • Sen, P. N., & Basser, P. J. (2005). A model for diffusion in white matter in the brain. Biophysical Journal, 89, 2927–2938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman, S. M. (2007). The thalamus is more than just a relay. Current Opinion in Neurobiology, 17, 417–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localization in cluster inference. NeuroImage, 44, 83–98.

    Article  PubMed  Google Scholar 

  • Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage, 31, 1487–1505.

    Article  PubMed  Google Scholar 

  • Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurology, 11, 1006–1012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Varentsova, A., Zhang, S., & Arfanakis, K. (2014). Development of a high angular resolution diffusion imaging human brain template. NeuroImage, 91, 177–186.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson, R. S., Bennett, D. A., Bienias, J. L., Mendes de Leon, C. F., Morris, M. C., & Evans, D. A. (2003). Cognitive activity and cognitive decline in a biracial community population. Neurology, 61, 812–816.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, R. S., Barnes, L. L., Krueger, K. R., Hoganson, G., Bienias, J. L., & Bennett, D. A. (2005). Early and late life cognitive activity and cognitive systems in old age. Journal of the International Neuropsychological Society, 11, 400–407.

    Article  PubMed  Google Scholar 

  • Wilson, R. S., Scherr, P. A., Schneider, J. A., Tang, Y., & Bennett, D. A. (2007). Relation of cognitive activity to risk of developing Alzheimer disease. Neurology, 69, 1911–1920.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, R. S., Segawa, E., Boyle, P. A., & Bennett, D. A. (2012). Influence of late-life cognitive activity on cognitive health. Neurology, 78, 1123–1129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson, R. S., Boyle, P. A., Yu, L., Barnes, L. L., Schneider, J. A., & Bennett, D. A. (2013a). Life-span cognitive activity, neuropathologic burden, and cognitive aging. Neurology, 81, 314–321.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson, R. S., Nag, S., Boyle, P. A., Hizel, L. P., Yu, L., Buchman, A. S., et al. (2013b). Neural reserve, neuronal density in the locus ceruleus, and cognitive decline. Neurology, 80, 1202–1208.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institute on Aging (R01AG017917, P30AG010161), National Institute on Minority Health and Health Disparities (P20MD006886), National Institute of Neurological Disorders and Stroke (R21NS076827), National Institute of Biomedical Imaging and Bioengineering (R21EB006525), and the Illinois Department of Public Health.

Conflict of Interest

Konstantinos Arfanakis, Robert S. Wilson, Christopher M. Barth, Ana W. Capuano, Anil Vasireddi, Shengwei Zhang, Debra A. Fleischman, and David A. Bennett declare that they have no conflicts of interest.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Arfanakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arfanakis, K., Wilson, R.S., Barth, C.M. et al. Cognitive activity, cognitive function, and brain diffusion characteristics in old age. Brain Imaging and Behavior 10, 455–463 (2016). https://doi.org/10.1007/s11682-015-9405-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-015-9405-5

Keywords

Navigation