Skip to main content

Advertisement

Log in

Simulation of Fe-Cr-X Alloy Exposed to an Oxyfuel Combustion Atmosphere at 600 °C

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

In coal-fired power plants using oxyfuel combustion process with carbon capture and sequestration, instead of air, a mixture of oxygen and recirculated flue gas is injected in the boiler. A series of steels were exposed to CO2-SO2-Ar-H2O gas mixtures at 600 °C for 1000 h to compare their high temperature corrosion behavior. During the corrosion process, carburization, decarburization and recrystallization were observed underneath the oxide scale depending on the gas mixture and alloy composition. The conditions that lead to carburization are not yet completely understood, but decarburization can be simulated using thermodynamic and kinetic models. In this work, the results of these simulations are compared with measured values for one of the alloys that displayed a decarburized region. Since the mobility of carbon in the scale is not known, two strategies were adopted: simulation of alloy-atmosphere contact; and estimation of the carbon flux to produce the observed decarburization. The second approach might give an insight on how permeable to carbon the scale is.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.G. Miller, Clean Coal, Butterworth-Heinemann, Oxford, 2011, ISBN 978-1856177108

    Google Scholar 

  2. IEA. Key World Energy World Statistics 2013. IEA. [S.l.], 2013

  3. IEA. Tracking Clean Energy Progress 2013. IEA. [S.l.], 2013

  4. D. Lüthi, M. le Floch, B. Bereiter, T. Blunier, J.-M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura, and T.F. Stocker, High-Resolution Carbon Dioxide Concentration Record 650,000-800,000 Years Before Present, Nature, 2008, 435, p 379-382

    Article  Google Scholar 

  5. P.J. Robinson and A. Henserson-Sellers, Contemporary Climatology, 2nd ed., Pearson Education Limited, Essex, 1999, ISBN 0-582-27631-4

    Google Scholar 

  6. NOAA Earth System Research Laboratory. NOAA Earth System Research Laboratory. http://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html#mlo_data

  7. J. Cook, D. Nuccitelli, S.A. Green, M. Richardson, B. Winkler, R. Painting, R. Way, P. Jacobs, and A. Skuce, Quantifying the Consensus on Anthropogenic Global Warming in the Scientific Literature, Environ Res Lett, 2013, 8, p 1-7

    Article  Google Scholar 

  8. IEA. World Energy Outlook 2013 Factsheet. IEA. [S.l.], 2013

  9. D. Zhang, Ultra-supercritical Coal Power Plants: Materials, Technologies and Optimisation, 1st ed., Woodhead Publishing, Cambridge, 2013, ISBN 0857091166

    Book  Google Scholar 

  10. K. Foy and E. Yantovski, History and State-of-the-Art of Fuel Fired Zero Emission Power Cycles, Int J Thermodyn, 2006, 9(2), p 37-63

    Google Scholar 

  11. M.B. Toftegaard, J. Brix, P.A. Jensen, P. Glarborg, and A.D. Jensen, Oxy-Fuel Combustion of Solid Fuels, Prog Energy Combust Sci, 2010, 36, p 581-625

    Article  Google Scholar 

  12. V. White, L. Torrente-Murciano, D. Sturgeon, and D. Chadwick, Purification of Oxyfuel-Derived CO2, Int J Greenh Gas Control, 2010, 4, p 137-142

    Article  Google Scholar 

  13. V. White, A. Wright, S. Tappe, and J. Yan, The Air Products Vattenfall Oxyfuel CO2 Compression and Purification Pilot Plant at Schwarze Pumpe, Energy Proc, 2013, 37, p 1490-1499

    Article  Google Scholar 

  14. J. Yan, R.F. Anheden, F. Starfelt, R. Preusche, H. Ecke, N. Padban, D. Kosel, N. Jentsch, and G. Lindgrenet, Flue Gas Cleaning for CO2 Capture from Coal-Fired Oxyfuel Combustion Power Generation, Energy Proc, 2011, 4, p 900-907

    Article  Google Scholar 

  15. D.A. Voss, E.P. Butler, and T.E. Mitchell, The Growth of Hematite Blades During the High Temperature Oxidation of Iron, Metall Trans A, 1982, 13A, p 929-935

    Article  ADS  Google Scholar 

  16. A. Kather and S. Kownatzki, Assessment of the Different Parameters Affecting the CO2 Purity from Coal Fired Oxyfuel Process, Int J Greenh Gas Control, 2001, 5, p S204-S209

    Google Scholar 

  17. D. Hünert and A. Kranzmann, Influence of Pressure and Chromium Content on Corrosion Reactions at 600 °C in a CO 2 -H 2 O Atmosphere. Corrosion 2008, Nace, New Orleans, 2008

    Google Scholar 

  18. D. Hünert, Korrosionsprozesse und Aufkohlung von ferritisch-martensitischen Stählen in H 2 O-CO 2 Atmosphären, BAM, Berlin, 2010

    Google Scholar 

  19. J. Pirón-Abellán, T. Olszewski, H.J. Penkalla, G.H. Meier, L. Singheister, and W.J. Quadakkers, Scale Formation Mechanisms of Martensitic Steels in High CO2/H2O-Containing Gases Simulating Oxyfuel Environments, Mater High Temp, 2009, 26(1), p 63-72

    Article  Google Scholar 

  20. N. Mu, K.Y. Jung, N.M. Yanar, G.H. Meier, F.S. Pettit, and G.R. Holcomb, Water Vapor Effects on the Oxidation Behavior of Fe-Cr and Ni-Cr Alloys in Atmospheres Relevant to Oxy-Fuel Combustion, Oxid Met, 2012, 78, p 221-237

    Article  Google Scholar 

  21. G.H. Meier, K. Jung, N. Mu, N.M. Yanar, F.S. Pettit, J.P. Abellán, T. Olszewski, L.N. Hierro, W.J. Quadakkers, and G.R. Holcomb, Effect of Alloy Composition and Exposure Conditions on the Selective Oxidation Behavior of Ferritic Fe-Cr and Fe-Cr-X Alloys, Oxid Met, 2010, 74, p 319-340

    Article  Google Scholar 

  22. I. Wolf and H.J. Grabke, A Study on the Solubility and Distribution of Carbon in Oxides, Solid State Commun, 1985, 54(1), p 5-10

    Article  ADS  Google Scholar 

  23. T. Gheno, D. Monceau, J. Zhang, and D.J. Young, Carburisation of Ferritic Fe-Cr Alloys by Low Carbon Activity Gases, Corros Sci, 2011, 53(9), p 2767-2777

    Article  Google Scholar 

  24. Z. Zeng, K. Natesan, Z. Cai, D. Gosztola, R. Cook, and J. Hiller, Effect of Element Diffusion Through Metallic Networks During Oxidation of Type 321 Stainless Steel, J Mater Eng Perform, 2014, 23(4), p 1247-1262

    Article  Google Scholar 

  25. A. Borgenstam, L. Höglund, J. Ågren, and A. Engström, DICTRA, a Tool for Simulation of Diffusional Transformations in Alloys, J Phase Equilib, 2000, 21(3), p 269-280

    Article  Google Scholar 

  26. Thermocalc Software AB. TCFE7. Stockholm, 2012. Database

  27. Thermocalc Software AB. MOBFE2. Stockholm, 2013. Database

  28. B. Sundman, B. Jansson, and J.-O. Andersson, The Thermo-Calc Databank System, Calphad, 1985, 9(2), p 153-190

    Article  Google Scholar 

  29. H. Larsson and L. Höglund, Multiphase Diffusion Simulations in 1D Using the DICTRA Homogenization Model, Calphad, 2009, 33(3), p 495-501

    Article  Google Scholar 

  30. I. Wolf, J. Grabke, and P. Schmidt, Carbon Transport Through Oxide Scales on Fe-Cr Alloys, Oxid Met, 1988, 29(3-4), p 289-306

    Article  Google Scholar 

  31. L. Sproge and J. Ågren, Experimental and Theoretical Studies of Gas Consumption in the Gas Carburizing Process, J Heat Treat, 1988, 6(1), p 9-19

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the PROBRAL Program, CAPES, CNPq, FAPERJ, DAAD and the BAM for supporting this research. The help of Eric Lass, at NIST, who arc melted and rolled the steel samples is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Costa e Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa e Silva, A., Coelho, D., Kranzmann, A. et al. Simulation of Fe-Cr-X Alloy Exposed to an Oxyfuel Combustion Atmosphere at 600 °C. J. Phase Equilib. Diffus. 37, 19–24 (2016). https://doi.org/10.1007/s11669-015-0421-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-015-0421-3

Keywords

Navigation