Skip to main content
Log in

Tensile Strength Alteration of GFRP Composite Pipes Under Seawater-Dominated Conditions

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Glass fiber-reinforced epoxy composite pipes are used in submarine applications, natural gas, and oil transportation lines, transfer of chemical liquids. Especially in the transport of pressurized fluids, changes in the strength of the pipes are important. The corrosive effect of seawater has an important impact on the mechanical properties of the composite material. In particular, the alteration in hoop tensile strength is one of the issues to be investigated. In this experimental study, glass fiber-reinforced epoxy resin composite pipes were exposed to the seawater aging process for different time periods (1, 2 and 3 months) in order to determine the effects of seawater absorption behavior on hoop tensile strength. Hoop tensile strength test was realized in accordance with ASTM D2290 Procedure A. As a result of this work, the average tensile strength values of the composite pipes decreased as the waiting times in seawater increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Kara, M. Uyaner, A. Avci, A. Akdemir, Effect of non-penetrating impact damages of pre-stressed GRP tubes at low velocities on the burst strength. Compos. B Eng. 60, 507–514 (2014)

    Article  CAS  Google Scholar 

  2. M. Uyaner, M. Kara, A. Şahin, Fatigue behavior of filament wound E-glass/epoxy composite tubes damaged by low velocity impact. Compos. B Eng. 61, 358–364 (2014)

    Article  CAS  Google Scholar 

  3. K. Alderson, K. Evans, Low velocity transverse impact of filament-wound pipes: Part 1: damage due to static and impact loads. Compos. Struct. 20(1), 37–45 (1992)

    Article  Google Scholar 

  4. E.S. Rodriguez, V.A. Alvarez, P.E. Montemartini, Failure analysis of a GFRP pipe for oil transport. Eng. Fail. Anal. 28, 16–24 (2013)

    Article  CAS  Google Scholar 

  5. E. Mahdi, A.M.S. Hamouda, B.B. Sahari, Y.A. Khalid, Effect of hybridisation on crushing behaviour of carbon/glass fibre/epoxy circular–cylindrical shells. J. Mater. Process. Technol. 132(1–3), 49–57 (2003)

    Article  CAS  Google Scholar 

  6. R.K. Watkins, L.R. Anderson, Structural Mechanics of Buried Pipes (CRC Press, Boca Raton, 1999)

    Book  Google Scholar 

  7. H.F. Kayıran. Farklı ortam koşullarına maruz hibrit kompozit plakalarda burkulma davranışının incelenmesi., in Fen Bilimleri Enstitüsü Makine Mühendisliği. University of Suleyman Demirel Isparta, Turkey (2018)

  8. H. Kanlıoğlu. Environmental effects on pin-loaded laminated composites. DEÜ Fen Bilimleri Enstitüsü (2009)

  9. J.F. Wellicome, R.A. Shenoi, Composite Materials in Maritime Structures: Fundamental Aspects (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  10. W.S. Chow, Water absorption of epoxy/glass fiber/organo-montmorillonite nanocomposites. Express Polym. Lett. 1(2), 104–108 (2007)

    Article  CAS  Google Scholar 

  11. N.M. Barkoula, A. Paipetis, T. Matikas, A. Vavouliotis, P. Karapappas, V. Kostopoulos, Environmental degradation of carbon nanotube-modified composite laminates: a study of electrical resistivity. Mech. Compos. Mater. 45(1), 21–32 (2009)

    Article  CAS  Google Scholar 

  12. A.R. Bunsell, B. Harris, Hybrid carbon and glass fibre composites. Composites 5(4), 157–164 (1974)

    Article  Google Scholar 

  13. R.K. Nayak, B.C. Ray, Influence of seawater absorption on retention of mechanical properties of nano-TiO2 embedded glass fiber reinforced epoxy polymer matrix composites. Arch. Civ. Mech. Eng. 18(4), 1597–1607 (2018)

    Article  Google Scholar 

  14. C.J. Huang, S.Y. Fu, Y.H. Zhang, B. Lauke, L.F. Li, L. Ye, Cryogenic properties of SiO2/epoxy nanocomposites. Cryogenics 45(6), 450–454 (2005)

    Article  CAS  Google Scholar 

  15. E.P. Gellert, D.M. Turley, Seawater immersion ageing of glass-fibre reinforced polymer laminates for marine applications. Compos. Part A Appl. Sci. Manuf. 30(11), 1259–1265 (1999)

    Article  Google Scholar 

  16. A.M. Visco, N. Campo, P. Cianciafara, Comparison of seawater absorption properties of thermoset resins based composites. Compos. Part A Appl. Sci. Manuf. 42(2), 123–130 (2011)

    Article  Google Scholar 

  17. R. Pal, H.N.N. Murthy, M. Sreejith, K.R.V. Mahesh, M. Krishna, S.C. Sharma, Effect of laminate thickness on moisture diffusion of polymer matrix composites in artificial seawater ageing. Front. Mater. Sci. 6(3), 225–235 (2012)

    Article  Google Scholar 

  18. P. Davies, Y.D. Rajapakse, Durability of Composites in a Marine Environment, vol. 208 (Springer, Berlin, 2014)

    Book  Google Scholar 

  19. M. Bazli, H. Ashrafi, A.V. Oskouei, Effect of harsh environments on mechanical properties of GFRP pultruded profiles. Compos. B Eng. 99, 203–215 (2016)

    Article  CAS  Google Scholar 

  20. L. Wu, K. Murphy, V.M. Karbhari, J.S. Zhang, Short-term effects of sea water on E-glass/vinylester composites. J. Appl. Polym. Sci. 84(14), 2760–2767 (2002)

    Article  CAS  Google Scholar 

  21. A. Kootsookos, A.P. Mouritz, Seawater durability of glass-and carbon-polymer composites. Compos. Sci. Technol. 64(10–11), 1503–1511 (2004)

    Article  CAS  Google Scholar 

  22. M. Belevi, G. İnançer, Darbe ve ortam şartlarının kompozit malzemelerin mekanik özelliklerine etkileri. Makine Teknolojileri Elektronik Dergisi 4, 19–31 (2008)

    Google Scholar 

  23. H. Gu, Behaviours of glass fibre/unsaturated polyester composites under seawater environment. Mater. Des. 30(4), 1337–1340 (2009)

    Article  CAS  Google Scholar 

  24. M. Sari. Sea water effect on composite pipes subjected to impact loading. Dokuz Eylul University: Izmir, Turkey (2010)

  25. G. Örçen, M. Gür. Cam Fiber Takviyeli Dokuma Epoksi Kompozit Prepreglerin Mekanik Özellikleri Üzerinde Çevre Şartlarının Etkisi (2011)

  26. R. Karakuzu, İ.C. Çalık, M.E. Deniz, Tabakalı Kompozit Plakların Darbe Davranışı Üzerine Deniz Suyu Etkisinin Araştırılması. Batman Üniversitesi Yaşam Bilimleri Dergisi 7(2/2), 1–13 (2017)

    Google Scholar 

  27. E. José-Trujillo, C. Rubio-González, J.A. Rodríguez-González, Seawater ageing effect on the mechanical properties of composites with different fiber and matrix types. J. Compos. Mater. 53(23), 3229–3241 (2019)

    Article  Google Scholar 

  28. M. Kara, M. Kırıcı, Effects of the number of fatigue cycles on the impact behavior of glass fiber/epoxy composite tubes. Compos. B Eng. 123, 55–63 (2017)

    Article  CAS  Google Scholar 

  29. M. Kara. Düşük hızlı darbe sonrası yama ile tamir edilmiş filaman sarım CTP boruların iç basınç altındaki hasar davranışı. Selçuk Üniversitesi Fen Bilimleri Enstitüsü (2012)

  30. I. Demirci. Karbon nanotüp ve nano silika takviyeli bazalt/epoksi hibrit nanokompozitlerin korozif ortamda darbe davranışları Selçuk University: Konya (2017)

  31. ASTM D 2290-12, Standard Test Method for Apparent Hoop Tensile Strength of Plastic or Reinforced Plastic Pipe. American Society for Testing and Materials. ASTM International, West Conshohocken, PA, 2006, www.astm.org, (2013)

  32. B. Wei, H. Cao, S. Song, Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater. Corros. Sci. 53(1), 426–431 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Gunoz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunoz, A., Kepir, Y. & Kara, M. Tensile Strength Alteration of GFRP Composite Pipes Under Seawater-Dominated Conditions. J Fail. Anal. and Preven. 20, 1426–1430 (2020). https://doi.org/10.1007/s11668-020-00962-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-020-00962-2

Keywords

Navigation