Skip to main content
Log in

Finite Element Analysis of Plastic Collapse and Crack Behavior of Steel Pressure Vessels and Piping Using XFEM

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

This article aims to study the plastic collapse and crack behavior of steel pressure vessels and piping using the extended finite element method (XFEM). First, the plastic collapse loads of steel cylinders under the internal pressure are predicted, and the numerical results are compared with experimental data. In addition, the computational efficiency and accuracy using different methods including the XFEM, nonlinear stabilization algorithm, and arc-length algorithm are compared. Particularly, effects of different initial crack configurations, element sizes, damage initiation, and evolution criteria on the crack behaviors are investigated. Second, the crack initiation and propagation properties of buried pipelines due to deflection in the landslide area are explored, and the numerical results are compared between testing data and current study. Besides, the effects of internal pressure, wall thickness, soil property, and width of landslide area on the critical deflection displacement of buried pipeline are studied. This research provides a fundamental support for safety evaluation and life prediction of pressurized structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. ABAQUS 6.11 documentation.

Abbreviations

a :

Crack depth

D/t ratio:

Ratio of diameter to thickness

E :

Young’s modulus

G :

Energy release rate

G IC, G IIC, G IIIC :

Critical energy release rates of three fracture modes

G C :

Critical equivalent energy release rates based on mixed-mode criteria

l :

Crack length

P i :

Internal pressure

R m :

Tensile strength

U max :

Maximum deflection displacement along the axial direction

\( \sigma_{{\hbox{Max} {\text{ps}}}} \) :

Maximum principal stress as damage initiation criterion

References

  1. Mathur, K.K., Needleman, A., Tvergaard, V.: Ductile failure analyses on massively parallel computers. Comput. Meth. Appl. Mech. Eng. 119(3), 283–309 (1994)

    Article  Google Scholar 

  2. de Borst, R.: Challenges in computational materials science: multiple scales, multi-physics and evolving discontinuities. Comput. Mater. Sci. 43(1), 1–15 (2008)

    Article  Google Scholar 

  3. ASME BPVC VIII-3. Alternative Rules for Construction of High Pressure Vessels (2010)

  4. Liu, P.F., Zheng, J.Y., Miao, C.J.: Calculations of plastic collapse load of pressure vessel using FEA. J. Zhejiang Univ. Sci. A 9(7), 900–906 (2008)

    Article  Google Scholar 

  5. Liu, P.F., Zheng, J.Y.: Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics. Mater. Sci. Eng. A 485(1), 711–717 (2008)

    Article  Google Scholar 

  6. Liu, P.F., Zheng, J.Y.: Review on Methodologies of Progressive Failure Analysis of Composite Laminates. Continuum Mechanics, Chap. 11. Nova Science Publishers, New York (2009)

  7. Liu, P.F., Zheng, J.Y.: Recent developments on damage modeling and finite element analysis for composite laminates: a review. Mater. Design 31(8), 3825–3834 (2010)

    Article  CAS  Google Scholar 

  8. Zheng, J.Y., Liu, P.F.: Elasto-plastic stress analysis and burst strength evaluation of Al-carbon fiber/epoxy composite cylindrical laminates. Comput. Mater. Sci. 42(3), 453–461 (2008)

    Article  CAS  Google Scholar 

  9. Xu, P., Zheng, J.Y., Liu, P.F.: Finite element analysis of burst pressure of composite hydrogen storage vessels. Mater. Design 30(7), 2295–2301 (2009)

    Article  CAS  Google Scholar 

  10. Siegmund, T.: A numerical study of transient fatigue crack growth by use of an irreversible cohesive zone model. Int. J. Fatigue 26(9), 929–939 (2004)

    Article  Google Scholar 

  11. Roe, K.L., Siegmund, T.: An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng. Fract. Mech. 70(2), 209–232 (2003)

    Article  Google Scholar 

  12. Bouvard, J.L., Chaboche, J.L., Feyel, F., et al.: A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal super alloys. Int. J. Fatigue 31(5), 868–879 (2009)

    Article  CAS  Google Scholar 

  13. Liu, P.F., Hou, S.J., Chu, J.K., et al.: Finite element analysis of postbuckling and delamination of composite laminates using virtual crack closure technique. Compos. Struct. 93(6), 1549–1560 (2011)

    Article  Google Scholar 

  14. Fawaz, S.A.: Application of the virtual crack closure technique to calculate stress intensity factors for through cracks with an elliptical crack front. Eng. Fract. Mech. 59(3), 327–342 (1998)

    Article  Google Scholar 

  15. Servetti, G., Zhang, X.: Predicting fatigue crack growth rate in a welded butt joint: the role of effective R ratio in accounting for residual stress effect. Eng. Fract. Mech. 76(11), 1589–1602 (2009)

    Article  Google Scholar 

  16. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45(5), 601–620 (1999)

    Article  Google Scholar 

  17. Belytschko, T., Chen, H., Xu, J., et al.: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. Numer. Methods Eng. 58(12), 1873–1905 (2003)

    Article  Google Scholar 

  18. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)

    Article  Google Scholar 

  19. Moës, N., Belytschko, T.: Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69(7), 813–833 (2002)

    Article  Google Scholar 

  20. Sukumar, N., Moës, N., Moran, B., et al.: Extended finite element method for three-dimensional crack modeling. Int. J. Numer. Methods Eng. 48(11), 1549–1570 (2000)

    Article  Google Scholar 

  21. Sukumar, N., Huang, Z.Y., Prévost, J.H., et al.: Partition of unity enrichment for bimaterial interface cracks. Int. J. Numer. Methods Eng. 59(8), 1075–1102 (2003)

    Article  Google Scholar 

  22. Giner, E., Sukumar, N., Tarancón, J.E.: An Abaqus implementation of the extended finite element method. Eng. Fract. Mech. 76(3), 347–368 (2009)

    Article  Google Scholar 

  23. Campilho, R.D.S.G., Banea, M.D., Chaves, F.J.P., et al.: eXtended finite element method for fracture characterization of adhesive joints in pure mode I. Comput. Mater. Sci. 50(4), 1543–1549 (2011)

    Article  Google Scholar 

  24. Golewski, G.L., Golewski, P., Sadowski, T.: Numerical modelling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method. Comput. Mater. Sci. 62, 75–78 (2012)

    Article  CAS  Google Scholar 

  25. Wang, Z.Q., Zhou, S., Zhang, J.F.: Progressive failure analysis of bolted single-lap composite joint based on extended finite element method. Mater. Design 37, 582–588 (2012)

    Article  Google Scholar 

  26. Xu, Y.J., Yuan, H.: Applications of normal stress dominated cohesive zone models for mixed-mode crack simulation based on extended finite element methods. Eng. Fract. Mech. 78, 544–558 (2011)

    Article  Google Scholar 

  27. Comi, C., Mariani, S., Perego, U.: An extended FE strategy for transition from continuum damage to mode I cohesive crack propagation. Int. J. Numer. Anal. Methods Geomech. 31, 213–238 (2007)

    Article  Google Scholar 

  28. Benzeggagh, M.L., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56(4), 439–449 (1996)

    Article  CAS  Google Scholar 

  29. Mojiri, S. Numerical Analysis of Cohesive Crack Growth Using Extended Finite Element Method (X-FEM). Master of Science Thesis. Institut de Recherche en Génie Civil et Méchanique, France (2010)

  30. Liu, P.F., Zheng, J.Y., Zhang, B.J.: Failure analysis of natural gas buried X65 steel pipeline under deflection load using finite element method. Mater. Des. 31(3), 1384–1391 (2010)

    Article  CAS  Google Scholar 

  31. Zheng, J.Y., Zhang, B.J., Liu, P.F.: Failure analysis and safety evaluation of buried pipeline due to deflection of landslide process. Eng. Fail. Anal. 25, 156–168 (2012)

    Article  Google Scholar 

  32. BS EN 1594. Gas supply systems—Pipelines for maximum operating pressure over 16 bar—Functional requirements. British Standards Policy and Strategy Committee (2009)

  33. ASME B31.8. Gas Transmission and Distribution Piping Systems. The American Society of Mechanical Engineers (2010)

Download references

Acknowledgement

This research is supported by the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA040103), the Special Funds for Quality Supervision Research in the Public Interest (Grant No. 201210242) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P.F., Zhang, B.J. & Zheng, J.Y. Finite Element Analysis of Plastic Collapse and Crack Behavior of Steel Pressure Vessels and Piping Using XFEM. J Fail. Anal. and Preven. 12, 707–718 (2012). https://doi.org/10.1007/s11668-012-9623-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-012-9623-8

Keywords

Navigation