Skip to main content
Log in

Correlation of Fracture Mode Transition of Ceramic Particle with Critical Velocity for Successful Deposition in Vacuum Kinetic Spraying Process

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Vacuum kinetic spraying (VKS) is a promising room-temperature process to fabricate dense ceramic films. However, unfortunately, the deposition mechanism is still not clearly understood. In this respect, the critical conditions for successful deposition were investigated. Based on simulation and microstructural analysis, it was found that as the particle velocity increased, fracture mode transition from tensile fracture to shear fracture occurred and particle did not bounce off anymore above a certain velocity. Simultaneously, particle underwent shock-induced plasticity and dynamic fragmentation. The plasticity assisted to prevent the fragments from rebounding by spending the excessive kinetic energy and fragmentation is essential for fragment bonding and film growth considering that the deposition rate increased as the fraction of fragmentation increased. Accordingly, plasticity and fragmentation take a crucial role for particle deposition. In this respect, the velocity that fracture mode transition occurs is newly defined as critical velocity. Consequently, for successful deposition, the particle should at least exceed the critical velocity and thus it is very crucial for film fabrication in VKS process at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Akedo, Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices, J. Therm. Spray Technol., 2008, 17(2), p 181-198

    Article  Google Scholar 

  2. D. Hanft, J. Exner, M. Schubert, T. Stöcker, P. Fuierer, and R. Moos, An Overview of the Aerosol Deposition Method: Process Fundamentals and New Trends in Materials Applications, J. Ceram. Sci. Technol., 2015, 6, p 147-182

    Google Scholar 

  3. G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56(17), p 4858-4868

    Article  Google Scholar 

  4. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  Google Scholar 

  5. H. Park, J. Kwon, I. Lee, and C. Lee, Shock-Induced Plasticity and Fragmentation Phenomena During Alumina Deposition in the Vacuum Kinetic Spraying Process, Scr. Mater., 2015, 100, p 44-47

    Article  Google Scholar 

  6. J. Kwon, H. Park, I. Lee, and C. Lee, Effect of Gas Flow Rate on Deposition Behavior of Fe-Based Amorphous Alloys in Vacuum Kinetic Spray Process, Surf. Coat. Technol., 2014, 259, p 585-593

    Article  Google Scholar 

  7. T.J. Holmquist, D.W. Templeton, and K.D. Bishnoi, Constitutive Modeling of Aluminum Nitride for Large Strain, High-Strain Rate, and High-Pressure Applications, Int. J. Impact Eng., 2001, 25(3), p 211-231

    Article  Google Scholar 

  8. D.S. Cronin, K. Bui, C. Kaufmann, G. McIntosh, T. Berstad, and D. Cronin, Implementation and Validation of the Johnson-Holmquist Ceramic Material Model in LS-DYNA, 4th European LS-Dyna Users Conference, 2003, pp 47-60

  9. K. Naoe, M. Nishiki, and A. Yumoto, Relationship Between Impact Velocity of Al2O3 Particles and Deposition Efficiency in Aerosol Deposition Method, J. Therm. Spray Technol., 2013, 22(8), p 1267-1274

    Article  Google Scholar 

  10. D.-W. Lee, H.-J. Kim, Y.-N. Kim, M.-S. Jeon, and S.-M. Nam, Substrate Hardness Dependency on Properties of Al2O3 Thick Films Grown by Aerosol Deposition, Surf. Coat. Technol., 2012, 209, p 160-168

    Article  Google Scholar 

  11. E. Andrews and K.-S. Kim, Threshold Conditions for Dynamic Fragmentation of Ceramic Particles, Mech. Mater., 1998, 29(3), p 161-180

    Article  Google Scholar 

  12. A. Salman, C. Biggs, J. Fu, I. Angyal, M. Szabo, and M. Hounslow, An Experimental Investigation of Particle Fragmentation Using Single Particle Impact Studies, Powder Technol., 2002, 128(1), p 36-46

    Article  Google Scholar 

  13. E. Calvié, L. Joly-Pottuz, C. Esnouf, P. Clément, V. Garnier, J. Chevalier, Y. Jorand, A. Malchère, T. Epicier, and K. Masenelli-Varlot, Real Time TEM Observation of Alumina Ceramic Nano-Particles During Compression, J. Eur. Ceram. Soc., 2012, 32(10), p 2067-2071

    Article  Google Scholar 

  14. G. Kanel, Behavior of Brittle Materials Under Dynamic Loading, Institute for Advanced Technology, 2000, p 1-56

  15. J. Lankford, W. Predebon, J. Staehler, G. Subhash, B. Pletka, and C. Anderson, The Role of Plasticity as a Limiting Factor in the Compressive Failure of High Strength Ceramics, Mech. Mater., 1998, 29(3), p 205-218

    Article  Google Scholar 

  16. J. Lankford, The Role of Dynamic Material Properties in the Performance of Ceramic Armor, Int. J. Appl. Ceram. Technol., 2004, 1(3), p 205-210

    Article  Google Scholar 

  17. M. Munro, Evaluated Material Properties for a Sintered Alpha-Alumina, J. Am. Ceram. Soc., 1997, 80(8), p 1919-1928

    Article  Google Scholar 

  18. D. Grady, Shock-Wave Compression of Brittle Solids, Mech. Mater., 1998, 29(3), p 181-203

    Article  Google Scholar 

  19. H. Park, J. Kim, and C. Lee, Dynamic Fragmentation Process and Fragment Microstructure Evolution of Alumina Particles in a Vacuum Kinetic Spraying System, Scr. Mater., 2015, 108, p 72-75

    Article  Google Scholar 

  20. A.B. Sawaoka, Shock Waves in Materials Science, Springer Science & Business Media, New York, 2012

    Google Scholar 

  21. M. Chen, J.W. McCauley, and K.J. Hemker, Shock-Induced Localized Amorphization in Boron Carbide, Science, 2003, 299(5612), p 1563-1566

    Article  Google Scholar 

  22. S. Han, L. Zhao, Q. Jiang, and J. Lian, Deformation-Induced Localized Solid-State Amorphization in Nanocrystalline Nickel, Sci. Rep., 2012, 2, p 493

    Google Scholar 

  23. D.W. Lee, H.J. Kim, Y.H. Kim, Y.H. Yun, and S.M. Nam, Growth Process of α-Al2O3 Ceramic Films on Metal Substrates Fabricated at Room Temperature by Aerosol Deposition, J. Am. Ceram. Soc., 2011, 94(9), p 3131-3138

    Article  Google Scholar 

  24. M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical Properties of Nanocrystalline Materials, Prog. Mater Sci., 2006, 51(4), p 427-556

    Article  Google Scholar 

  25. B.-N. Kim, K. Hiraga, K. Morita, and Y. Sakka, A High-Strain-Rate Superplastic Ceramic, Nature, 2001, 413(6853), p 288-291

    Article  Google Scholar 

  26. F. Cao, H. Park, G. Bae, J. Heo, and C. Lee, Microstructure Evolution of Titanium Nitride Film during Vacuum Kinetic Spraying, J. Am. Ceram. Soc., 2013, 96(1), p 40-43

    Article  Google Scholar 

  27. X. Han, L. Wang, Y. Yue, and Z. Zhang, In Situ Atomic Scale Mechanical Microscopy Discovering the Atomistic Mechanisms of Plasticity in Nano-Single Crystals and Grain Rotation in Polycrystalline Metals, Ultramicroscopy, 2015, 151, p 94-100

    Article  Google Scholar 

  28. M. Murayama, J. Howe, H. Hidaka, and S. Takaki, Atomic-Level Observation of Disclination Dipoles in Mechanically Milled, Nanocrystalline Fe, Science, 2002, 295(5564), p 2433-2435

    Article  Google Scholar 

  29. A.K. Mukhopadhyay, K.D. Joshi, A. Dey, R. Chakraborty, A. Rav, A.K. Mandal, J. Ghosh, S. Bysakh, S.K. Biswas, and S.C. Gupta, Nanoindentation of Shock Deformed Alumina, Mater. Sci. Eng. A, 2010, 527(24), p 6478-6483

    Article  Google Scholar 

  30. M. Schubert, J. Exner, and R. Moos, Influence of Carrier Gas Composition on the Stress of Al2O3 Coatings Prepared by the Aerosol Deposition Method, Materials, 2014, 7(8), p 5633-5642

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (NRF-2014R1A2A2A05007633).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhee Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Kim, J., Lee, S.B. et al. Correlation of Fracture Mode Transition of Ceramic Particle with Critical Velocity for Successful Deposition in Vacuum Kinetic Spraying Process. J Therm Spray Tech 26, 327–339 (2017). https://doi.org/10.1007/s11666-016-0516-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0516-3

Keywords

Navigation