Skip to main content

Advertisement

Log in

Engineered Three-Dimensional Electrodes by HVOF Process for Hydrogen Production

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

High velocity oxy-fuel process was used to prepare nickel electrode coatings for hydrogen production by alkaline water electrolysis. To further increase the active surface area of the electrodes, pyramidal fin arrays with two different sizes were deposited on the top surface of the electrodes using mesh screen masks. The surface microstructure, topology and roughness of the coatings were studied using scanning electron microscope, optical microscopy and confocal laser scanning microscopy. Steady-state polarization curves were used to evaluate the electrocatalytic activity of the electrodes. The performance of the electrodes coated using mesh outperformed the electrode deposited without using mesh. In addition, the electrode that was coated using the coarse mesh was characterized with the highest activity with the exchange current density and overpotential values of 9.3 × 10−3 A/cm2 and −306 mV, respectively. Formation of different roughness levels due to the combination of normal and off-normal impact of the coating particles on the surface of the fins was identified as the main factor for the increased activity of this electrode toward the hydrogen evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Ursua, L.M. Gandia, and P. Sanchis, Hydrogen Production from Water Electrolysis: Current Status and Future Trends, Proc. IEEE, 2012, 100(2), p 410-426

    Article  Google Scholar 

  2. W. Hu, Electrocatalytic Properties of New Electrocatalysts for Hydrogen Evolution in Alkaline Water Electrolysis, Int. J. Hydrogen Energy, 2000, 25(2), p 111-118

    Article  Google Scholar 

  3. D.L. Stojić, M.P. Marčeta, S.P. Sovilj, and Š.S. Miljanić, Hydrogen Generation from Water Electrolysis-Possibilities of Energy Saving, J. Power Sources, 2003, 118(1), p 315-319

    Article  Google Scholar 

  4. K. Zeng and D. Zhang, Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications, Prog. Energy Combust. Sci., 2010, 36(3), p 307-326

    Article  Google Scholar 

  5. C. Fan, D. Piron, A. Sleb, and P. Paradis, Study of Electrodeposited Nickel-Molybdenum, Nickel-Tungsten, Cobalt-Molybdenum, and Cobalt-Tungsten as Hydrogen Electrodes in Alkaline Water Electrolysis, J. Electrochem. Soc., 1994, 141(2), p 382-387

    Article  Google Scholar 

  6. H. Suffredini, J. Cerne, F. Crnkovic, S. Machado, and L. Avaca, Recent Developments in Electrode Materials for Water Electrolysis, Int. J. Hydrogen Energy, 2000, 25(5), p 415-423

    Article  Google Scholar 

  7. M. Janjua and R. Le Roy, Electrocatalyst Performance in Industrial Water Electrolysers, Int. J. Hydrogen Energy, 1985, 10(1), p 11-19

    Article  Google Scholar 

  8. B. Conway and G. Jerkiewicz, Relation of Energies and Coverages of Underpotential and Overpotential Deposited H at Pt and other Metals to the ‘Volcano Curve’ for Cathodic H2 Evolution Kinetics, Electrochim. Acta, 2000, 45(25), p 4075-4083

    Article  Google Scholar 

  9. I. Herraiz-Cardona, E. Ortega, J.G. Antón, and V. Pérez-Herranz, Assessment of the Roughness Factor Effect and the Intrinsic Catalytic Activity for Hydrogen Evolution Reaction on Ni-Based Electrodeposits, Int. J. Hydrogen Energy, 2011, 36(16), p 9428-9438

    Article  Google Scholar 

  10. F. Crnkovic, S. Machado, and L. Avaca, Electrochemical and Morphological Studies of Electrodeposited Ni–Fe–Mo–Zn Alloys Tailored for Water Electrolysis, Int. J. Hydrogen Energy, 2004, 29(3), p 249-254

    Article  Google Scholar 

  11. B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, and A. Lasia, The Structure, Morphology and Electrochemical Impedance Study of the Hydrogen Evolution Reaction on the Modified Nickel Electrodes, Int. J. Hydrogen Energy, 2004, 29(2), p 145-157

    Article  Google Scholar 

  12. M. Aghasibeig, M. Mousavi, F.B. Ettouill, C. Moreau, R. Wuthrich, and A. Dolatabadi, Electrocatalytically Active Nickel-Based Electrode Coatings Formed by Atmospheric and Suspension Plasma Spraying, J. Therm. Spray Technol., 2014, 23(1-2), p 220-226

    Article  Google Scholar 

  13. M. Aghasibeig, R. Wuthrich, C. Moreau, and A. Dolatabadi, Electrocatalytic Behaviour of Nickel Coatings Formed by APS and SPS Processes, International Thermal Spray Conference and Exposition, ASM International, 2014, p 739-744

  14. I. Herraiz-Cardona, E. Ortega, L. Vázquez-Gómez, and V. Pérez-Herranz, Double-Template Fabrication of Three-Dimensional Porous Nickel Electrodes for Hydrogen Evolution Reaction, Int. J. Hydrogen Energy, 2012, 37(3), p 2147-2156

    Article  Google Scholar 

  15. L. Birry and A. Lasia, Studies of the Hydrogen Evolution Reaction on Raney Nickel-Molybdenum Electrodes, J. Appl. Electrochem., 2004, 34(7), p 735-749

    Article  Google Scholar 

  16. A. Kellenberger, N. Vaszilcsin, W. Brandl, and N. Duteanu, Kinetics of Hydrogen Evolution Reaction on Skeleton Nickel and Nickel–Titanium Electrodes Obtained by Thermal Arc Spraying Technique, Int. J. Hydrogen Energy, 2007, 32(15), p 3258-3265

    Article  Google Scholar 

  17. M. Aghasibeig, H. Monajatizadeh, P. Bocher, A. Dolatabadi, R. Wuthrich, and C. Moreau, Cold Spray as a Novel Method for Development of Nickel Electrode Coatings for Hydrogen Production, Int. J. Hydrogen Energy, 2016, 41(1), p 227-238

    Article  Google Scholar 

  18. M. Aghasibeig, C. Moreau, A. Dolatabadi, and R. Wuthrich, Fabrication of Nickel Electrode Coatings by Combination of Atmospheric and Suspension Plasma Spray Processes, Surf. Coat. Technol., 2016, 285, p 68-76

    Article  Google Scholar 

  19. M. Oksa, E. Turunen, T. Suhonen, T. Varis, and S.P. Hannula, Optimization and Characterization of High Velocity Oxy-Fuel Sprayed Coatings: Techniques, Materials, and Applications, Coatings, 2011, 1(1), p 17-52

    Article  Google Scholar 

  20. C. Lyphout, P. Nylén, and L. Östergren, Relationships Between Process Parameters, Microstructure, and Adhesion Strength of HVOF Sprayed IN718 Coatings, J. Therm. Spray Technol., 2011, 20(1-2), p 76-82

    Article  Google Scholar 

  21. M. Aghasibeig, A. Dolatabadi, R. Wuthrich, and C. Moreau, Three-dimensional Electrode Coatings for Hydrogen Production Fabricated by Combined Atmospheric and Suspension Plasma Spray, Surf. Coat. Technol., 2016, 291, p 348-355

    Article  Google Scholar 

  22. M. Li and P.D. Christofides, Modeling and Control of High-velocity Oxygen-Fuel (HVOF) Thermal Spray: A Tutorial Review, J. Therm. Spray Technol., 2009, 18(5-6), p 753-768

    Article  Google Scholar 

  23. Y. Cormier, P. Dupuis, B. Jodoin, and A. Corbeil, Net Shape Fins for Compact Heat Exchanger Produced by Cold Spray, J. Therm. Spray Technol., 2013, 22(7), p 1210-1221

    Article  Google Scholar 

  24. Y. Cormier, P. Dupuis, B. Jodoin, and A. Corbeil, Pyramidal Fin Arrays Performance Using Streamwise Anisotropic Materials by Cold Spray Additive Manufacturing, J. Therm. Spray Technol., 2016, 25(1), p 170-182

    Article  Google Scholar 

  25. W. Tillmann, I. Baumann, P. Hollingsworth, and I.-A. Laemmerhirt, Influence of the Spray Angle on the Properties of HVOF Sprayed WC–Co Coatings Using (−10+ 2 μm) Fine Powders, J. Therm. Spray Technol., 2013, 22(2-3), p 272-279

    Article  Google Scholar 

  26. Š. Houdková, M. Kašparová, and F. Zahálka, The Influence of Spraying Angle on Properties of HVOF Sprayed Hardmetal Coatings, J. Therm. Spray Technol., 2010, 19(5), p 893-901

    Article  Google Scholar 

  27. C. Li, W. Li, Y. Wang, and H. Fukanuma, Effect of Spray Angle on Deposition Characteristics in Cold Spraying, Thermal Spray 2003: Advancing the Science & Applying the Technology, ASM International, USA, p 5-8

  28. P. Fauchais, A. Vardelle, M. Vardelle, and M. Fukumoto, Knowledge Concerning Splat Formation: An Invited Review, J. Therm. Spray Technol., 2004, 13(3), p 337-360

    Article  Google Scholar 

  29. H. Hagi, Diffusion Coefficient of Hydrogen in Iron Without Trapping by Dislocations and Impurities, Mater. Trans. JIM, 1994, 35(2), p 112-117

    Article  Google Scholar 

  30. S.M. Myers, M. Baskes, H. Birnbaum, J.W. Corbett, G. DeLeo, S. Estreicher, E.E. Haller, P. Jena, N.M. Johnson, and R. Kirchheim, Hydrogen Interactions with Defects in Crystalline Solids, Rev. Mod. Phys., 1992, 64(2), p 559

    Article  Google Scholar 

  31. B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, and A. Lasia, Effect of Heat-treatment on the Mechanism and Kinetics of the Hydrogen Evolution Reaction on Ni–P+ TiO2 + Ti Electrodes, J. Appl. Electrochem., 2004, 34(5), p 507-516

    Article  Google Scholar 

Download references

Acknowledgments

Acknowledgement is given to Dr. Fadhel Ben Ettouil for his assistance with the HVOF coating process. We wish to thank Mr. John Gavita at Olympus Corporation for providing access to the confocal laser scanning microscopy. This work was financially supported by Fonds de recherche du Québec (FQRNT), Natural Sciences and Engineering Research Council of Canada (NSERC) and Canada Research Chairs program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Wuthrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghasibeig, M., Moreau, C., Dolatabadi, A. et al. Engineered Three-Dimensional Electrodes by HVOF Process for Hydrogen Production. J Therm Spray Tech 25, 1561–1569 (2016). https://doi.org/10.1007/s11666-016-0458-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0458-9

Keywords

Navigation