Skip to main content
Log in

Modelling the Plasma Jet in Multi-Arc Plasma Spraying

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Particle in-flight characteristics in atmospheric plasma spraying process are determined by impulse and heat energy transferred between the plasma jet and injected powder particles. One of the important factors for the quality of the plasma-sprayed coatings is thus the distribution of plasma gas temperatures and velocities in plasma jet. Plasma jets generated by conventional single-arc plasma spraying systems and their interaction with powder particles were subject matter of intensive research. However, this does not apply to plasma jets generated by means of multi-arc plasma spraying systems yet. In this study, a numerical model has been developed which is designated to dealing with the flow characteristics of the plasma jet generated by means of a three-cathode spraying system. The upstream flow conditions, which were calculated using a priori conducted plasma generator simulations, have been coupled to the plasma jet simulations. The significances of the relevant numerical assumptions and aspects of the models are analyzed. The focus is placed on to the turbulence and diffusion/demixing modelling. A critical evaluation of the prediction power of the models is conducted by comparing the numerical results to the experimental results determined by means of emission spectroscopic computed tomography. It is evident that the numerical models exhibit a good accuracy for their intended use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F.-W. Bach, K. Möhwald, A. Laarmann, and T. Wenz, Modern Surface Technology (Wiley-VCH, New York, 2006), pp. 171-175. ISBN:978-3-527-31532-1

  2. K. Bobzin, F.B.G. Ernst, J.B. Zwick, K.R.M. Richardt, D. Sporer, and R. Molz, Triplex Pro 200: potentials and advanced applications, in Global Coating Solutions: Proceedings of the 2007 International Thermal Spray Conference, May 14–16, 2007 (Beijing, People’s Republic of China), ed. by B.R. Marple, TSS, ASM Thermal Spray Society, Materials Park, ASM International, 2007 (Ohio), pp. 723-726. ISBN: 978-0-87170-855-7, 978-0-387-77285-1

  3. A. Vardelle, C. Moreau, N.-J. Themelis, and C. Chazelas, A perspective on plasma spray technology, Plasma Chem. Plasma Process., 2015, 35(3), p 491-509. doi:10.1007/s11090-014-9600-y

    Article  Google Scholar 

  4. K. Bobzin and M. Öte, Modelling multi-arc spraying systems, J. Therm. Spray Technol., 2016, 25(2), p 920-932. doi:10.1007/s11666-016-0407-7

    Article  Google Scholar 

  5. L. Pawlowski, P. Fauchais, J.-F. Coudert, and M. Vardelle, Diagnostics of plasma spray process and derived on-line control, J. High Temp. Mater. Process., 2002, 6(2), p 247-267. doi:10.1615/HighTempMatProc.v6.i2.110

    Google Scholar 

  6. E. Meillot, D. Damiani, C. Caruyer, S. Vincent, and J.P. Caltagirone, Diagnostic of plasma flow by fast imaging visualization and by numerical simulation, IEEE Trans. Plasma Sci., 2011, 39(11), p 2330-2331

    Article  Google Scholar 

  7. P. Fauchais, J.-F. Coudert, and M. Vardelle, Thermal spray fundamentals, J. High Temp. Mater. Process., 2002, 6, p 247-267. doi:10.1007/978-0-387-68991-3

    Google Scholar 

  8. T. Zhang, D.T. Gawne, and B. Liu, Computer modelling of the influence of process parameters on the heating and acceleration of particles during plasma spraying, Surf. Coat. Technol., 2000, 132(2–3), p 233-243. doi:10.1016/S0257-8972(00)00847-1

    Article  Google Scholar 

  9. M. Vardelle, A. Vardelle, P. Fauchais, K.-I. Li, B. Dussoubs, and N.J. Themelis, Controlling particle injection in plasma spraying, J. Therm. Spray Technol., 2001, 10(2), p 267-284. doi:10.1361/105996301770349367

    Article  Google Scholar 

  10. M.P. Planche, R. Bolot, and C. Coddet, In-flight characteristics of plasma sprayed alumina particles: measurements, modeling, and comparison, J. Therm. Spray Technol., 2003, 12(1), p 101-111. doi:10.1361/105996303770348555

    Article  Google Scholar 

  11. D.-Y. Xu, X.-C. Wu, and X. Chen, Motion and heating of non-spherical particles in a plasma jet, Surf. Coat. Technol., 2003, 171(1–3), p 149-156. doi:10.1016/S0257-8972(03)00259-7

    Article  Google Scholar 

  12. C.W. Kang, H.W. Ng, and S.C.M. Yu, Plasma spray deposition on inclined substrates: simulations and experiments, J. Therm. Spray Technol., 2007, 16(2), p 261-274. doi:10.1007/s11666-007-9024-9

    Article  Google Scholar 

  13. H.-P. Li and E. Pfender, Three Dimensional modeling of the plasma spray process, J. Therm. Spray Technol., 2007, 16(2), p 245-260. doi:10.1007/s11666-007-9023-x

    Article  Google Scholar 

  14. W. Zhang, L.L. Zheng, H. Zhang, and S. Sampath, Study of injection angle and carrier gas flow rate effects on particles in-flight characteristics in plasma spray process: modeling and experiments, Plasma Chem. Plasma Process., 2007, 6, p 701-716. doi:10.1007/s11090-007-9101-3

    Article  Google Scholar 

  15. E. Meillot and G. Balmigere, Plasma spraying modeling: particle injection in a time-fluctuating plasma jet, Surf. Coat. Technol., 2008, 202(18), p 4465-4469. doi:10.1016/j.surfcoat.2008.04.028

    Article  Google Scholar 

  16. T.K. Thiyagarajan, K.P. Sreekumar, V. Selvan, K. Ramachandran, and P.V. Ananthapadmanabhan, Simulation studies to optimize the process of plasma spray deposition of yttrium oxide, J. Phys. Conf. Ser., 2010, 208(1), p 1-11. doi:10.1088/1742-6596/208/1/012116

    Google Scholar 

  17. Y.C. Lee and E. Pfender, Particle dynamics and particle heat and mass transfer in thermal plasmas, part iii: thermal plasma jet reactors and multiparticle injection, Plasma Chem. Plasma Process., 1987, 7(1), p 1-27. doi:10.1007/BF01015997

    Article  Google Scholar 

  18. P. Fauchais, Topical review: understanding plasma spraying, J. Phys. D Appl. Phys., 2004, 37(9), p 86-108. doi:10.1088/0022-3727/37/9/R02

    Article  Google Scholar 

  19. J.P. Trelles, C. Chazelas, A. Vardelle, and J. Heberlein, Arc plasma torch modeling, J. Therm. Spray Technol., 2009, 18(5–6), p 728-752

    Article  Google Scholar 

  20. K. Bobzin, N. Bagcivan, L. Zhao, I. Petkovic, J. Schein, K. Hartz-Behrend, S. Kirner, J.-L. Marqués, and G. Forter, Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying, Front. Mech. Eng., 2011, 6(3), p 324-331

    Google Scholar 

  21. K. Bobzin, and M. Öte, A numerical investigation: air plasma spraying by means of a three-cathode spraying torch. Therm. Spray Bull. (DVS-Verlag, Verlag für Schweißen und Verwandte Verfahren, Düsseldorf, 2015), 8(2), p. 118-125. ISSN:1866-6248

  22. K. Bobzin, N. Kopp, T. Warda, M.P. Schäfer, and M. Öte, A numerical investigation: influence of the operating gas on the flow characteristics of a three-cathode air plasma spraying system, in Thermal Spray 2013, Innovative Coating Solutions for the Global Economy, (Busan, Republic of Korea), (Springer, New York, 2013), pp. 400-405

  23. A.B. Murphy and E. Tam, Thermodynamic properties and transport coefficients of arc lamp plasmas: argon, krypton and xenon, J. Phys. D Appl. Phys., 2014, 47, p 1-10. doi:10.1088/0022-3727/47/29/295202

    Google Scholar 

  24. A.B. Murphy and C.J. Arundelli, Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas, Plasma Chem. Plasma Process., 1994, 14(4), p 451-490. doi:10.1007/BF01570207

    Article  Google Scholar 

  25. E. Pfender, Plasma jet behavior and modelling associated with the plasma spray process, Thin Solid Films, 1994, 238, p 228-241

    Article  Google Scholar 

  26. L. Menart and S. Malik, Net emission coefficients for argon-iron thermal plasmas, J. Phys. D Appl. Phys., 2002, 35(9), p 867-874. doi:10.1088/0022-3727/35/9/306

    Article  Google Scholar 

  27. U. Bauder, Radiation from high-pressure plasmas, J. Appl. Phys., 1968, 39(1), p 148-152

    Article  Google Scholar 

  28. K. Bobzin, N. Bagcivan, and I. Petkovic, Numerical and experimental determination of plasma temperature during air plasma spraying with a multiple cathodes torch, J. Mater. Process. Technol., 2011, 211(10), p 1620-1628. doi:10.1016/j.jmatprotec.2011.05.001

    Article  Google Scholar 

  29. L. Davidson, An Introduction to Turbulence Models, Department of Thermo and Fluid Dynamics, Göteburg, 1997

    Google Scholar 

  30. J. Sodja, Turbulenz Models in CFD, University of Ljubliana, Faculty of Mathematics and Physics, 2007

  31. S.B. Pope, An explanation of the turbulent round-jet/plane-jet anomaly, AIAA J., 1978, 16(3), p 279-281. doi:10.2514/3.7521

    Article  Google Scholar 

  32. R. Courant, K. Friedrichs, and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen, 1928, 100(1), p 32-74. doi:10.1007/BF01448839 ([in German])

    Article  Google Scholar 

  33. A. Gleizes, Y. Cressault, and P. Teulet, Mixing rules for thermal plasma properties in mixtures of argon: air and metallic vapours, Plasma Sources Sci. Technol., 2010, 19, p 1-13

    Article  Google Scholar 

  34. A.B. Murphy, Thermal plasmas in gas mixture, J. Phys. D Appl. Phys., 2001, 34, p 151-173

    Article  Google Scholar 

  35. A.B. Murphy, Calculation and application of combined diffusion coefficients in thermal plasmas, Sci. Rep., 2014, 4, p 4304. doi:10.1038/srep04304

    Article  Google Scholar 

  36. S. Zimmermann, S. Schmettlach, S. Kirner, G. Forster, J. Marqués, J. Schein, and T. Schläfer, Diagnostics for APS and HVOF spraying processes. Therm. Spray Bull. (DVS-Verlag, Verlag für Schweißen und Verwandte Verfahren, Düsseldorf, 2014), 7(2), p. 154-161. ISSN:1866-6248

  37. K. Bobzin, N. Kopp, T. Warda, I. Petkovic, S. Zimmermann, K. Hartz-Behrend, K.D. Landes, G. Foster, S. Kirner, J.-L. Marqués, J. Schein, J. Prehm, K. Möhwald, and F.-W. Bach, Improvement of coating properties in three-cathode atmospheric plasma spraying, J. Therm. Spray Technol., 2013, 22(4), p 503-508. doi:10.1007/s11666-013-9902-2

    Article  Google Scholar 

  38. J. Prehm, L. Xin, K. Möhwald, and F.-W. Bach, Coupled coating formation simulation in thermal spray processes using CFD and FEM, CFD Lett., 2011, 3(2), p 89-99

    Google Scholar 

  39. M. Raessi, J. Mostaghimi, and M. Bussmann, Impact and solidification of droplets onto rough substrates, Thermal Spray 2005: Thermal Spray Connects: Explore Its Surfacing Potential, E. Lugscheider, Ed., DVS Deutscher Verband für Schweißen, Basel, 2005,

    Google Scholar 

  40. M. Xue, S. Chandra, and J. Mostaghimi, Investigation of splat curling up in thermal spray coatings, J. Therm. Spray Technol., 2006, 15(4), p 531-536

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the German Research Foundation (DFG) within the project “Homogenization of Coating Properties in Atmospheric Plasma Spraying” (PAK 193/BO1979/7-2). This paper is partially based on chapters 3 and 5 in M. Öte, “Understanding Multi-Arc Plasma Spraying,” Shaker-Verlag, RWTH Aachen, Dissertation, ISBN: 978-3-8440-4598-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Öte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobzin, K., Öte, M., Schein, J. et al. Modelling the Plasma Jet in Multi-Arc Plasma Spraying. J Therm Spray Tech 25, 1111–1126 (2016). https://doi.org/10.1007/s11666-016-0438-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0438-0

Keywords

Navigation