Skip to main content
Log in

Modeling Multi-Arc Spraying Systems

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The use of plasma as energy source in thermal spraying enables among others the processing of feed stock materials with very high melting temperatures as coating materials. New generation multi-arc plasma spraying systems are widely spread and promise several advantages in comparison to the conventional single-arc systems. Numerical modeling of multi-arc plasma spraying offers the possibility to increase the understanding about this process. This study focuses on the numerical modeling of three-cathode spraying systems, introducing the recent activities in this field and discussing the numerical aspects which influence the prediction power of the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Bobzin, Oberflächentechnik für den Maschinenbau, Wiley-VCH Verlag, Germany, 2013, p 293-321, (in German)

  2. P. Fauchais, Topical Review: Understanding Plasma Spraying, J. Phys. D, 2004, 37, p 86-108. doi:10.1088/0022-3727/37/9/R02

    Article  Google Scholar 

  3. K. Landes, J. Zierhut, and G. Barbezat, Triplex—A High Performance Plasma Torch, Tagungsband Conference Proceedings, E. Lugscheider and R A. Kammer, Ed., March 17-19, 1999(Düsseldorf, Germany), DVS Deutscher Verband für Schweißen, p 271-274

  4. J. Zierhut, P. Halsbeck, K. Landes, G. Barbezat, M. Müller, and M. Schütz, Triplex—An Innovative Three-Cathode Plasma Torch, Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, Ed., May 25-29, 1998 (Nice, France), ASM International, 1998, 1693 p 1997 (Indianapolis, IN), ASM International, 1998

  5. K. Landes, M. Dzulko, E. Theophile, and J. Zierhut, New Developments in DC-Plasma Torches, Progress in Plasma Processing of Materials, 2003, ISBN Print: 978-1-56700-192-1

  6. J.J. Gonzalez, P. Freton, and A. Gleizes, Comparisons Between Two- and Three-Dimensional Models: Gas Injection and Arc Attachment, J. Phys. D, 2002, 35, p 3181-3191

    Article  Google Scholar 

  7. H.-P. Li, E. Pfender, and X. Chen, Application of Steenbeck’s Minimum Principle for Three-Dimensional Modeling of DC Arc Plasma Torches, J. Phys. D, 2003, 36, p 1084-1096

    Article  Google Scholar 

  8. C. Baudry, A. Vardelle, G. Mariaux, C. Delalondre, and E.Meillot, Three-Dimensional and Time-Dependent Model of the Dynamic Behavior of the Arc in a Plasma Spray Torch, Thermal Spray 2004: Advances in Technology and Application, ASM International, May 10-12, 2004 (Osaka, Japan), ASM International, 2004

  9. C. Chazelas, E. Moreau, G. Mariaux, and A. Vardelle, Numerical Modeling of Arc Behavior in a DC Plasma Torch, High Temp. Mater. Process., 2006, 10, p 393-406

    Article  Google Scholar 

  10. J.F. Coudert, M.P. Planche, and P. Fauchais, Characterization of D.C. Plasma Torch Voltage Fluctuations, Plasma Chem. Plasma Process., 1996, 16(1), p 211s-227s

    Google Scholar 

  11. J.-L. Dorier, M. Gindrat, C. Hollenstein, A. Salito, M. Loch, and G. Barbezat, Time Resolved Imaging of Anodic Arc Root Behavior During Fluctuations of a DC Plasma Spraying Torch, IEEE Trans. Plasma Sci., 2001, 29(3), p 494-500

    Article  Google Scholar 

  12. K. Ramachandran, N. Kikukawa, and H. Nishiyama, 3D Modeling of Plasma-Particle Interactions in a Plasma Jet Under Dense Loading Conditions, Thin Solid Films, 2003, 435(1-2), p 298-306

    Article  Google Scholar 

  13. J. Trelles, C. Chazelas, A. Vardelle, and J. Heberlein, Arc Plasma Torch Modeling, J. Therm. Spray Technol., 2009, 18(5-6), p 728-752

    Article  Google Scholar 

  14. H.C. Kim, F. Iza, S.S. Yang, M. Radmilovic-Radjenovic, and J.K. Lee, Particle and Fluid Simulations of Low-Temperature Plasma Discharges: Benchmarks and Kinetic Effects, J. Phys. D, 2005, 38, p 283-301

    Article  Google Scholar 

  15. V. Rat, A.B. Murphy, J. Aubreton, M.F. Elchinger, and P. Fauchais, Treatment of Non-Equilibrium Phenomena in Thermal Plasma Flows, J. Phys. D, 2008, 41(18). doi:10.1088/0022-3727/41/18/183001

  16. A. Gleizes, J.J. Gonzalez, and P. Freton, Topical Review: Thermal Plasma Modelling, J. Phys. D, 2005, 38(9), http://dx.doi.org/10.1088/0022-3727/38/9/R01

  17. K. Bobzin, N. Bagcivan, L. Zhao, I. Petkovic, J. Schein, K. Hartz-Behrend, S. Kirner, J.-L. Marqués, and G. Forster, Modelling and Diagnostics of Multiple Cathodes Plasma Torch System for Plasma Spraying, Front. Mech. Eng., 2011, 6(3), p 324-331

    Google Scholar 

  18. K. Bobzin, N. Bagcivan, I. Petkovic, F.-W. Bach, K. Möhwald, K. Hartz, J. Schein, K. Landes, and S. Zimmermann, Homogenization of Coating Properties in Atmospheric Plasma Spraying : Technical Objectives and First Results of a DFG Funded Research Group, Thermal Spray 2008: Crossing Borders, on CD-ROM, E. Lugscheider, Ed., June 2-4, 2008 (Maastricht, The Netherlands), DVS-German Welding Society, 2008, p 153-158

  19. F-W. Bach, K. Möhwald, A. Laarmann, and T. Wenz, Modern Surface Technology, Wiley, New York, 2006, p 171-175

  20. C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., May 28-30, 2001 (Singapore), ASM International, 2001, p 1272-1276

  21. A. Vardelle, C. Moreau, N.-J. Themelis, and C. Chazelas, A Perspective on Plasma Spray Technology, Plasma Chem. Plasma Process, 2015, 35(3), p 491-509

    Article  Google Scholar 

  22. K. Bobzin, F.B.G. Ernst, J.B. Zwick, K.R.M. Richardt, D. Sporer, and R. Molz, Triplex Pro 200 : Potentials and Advanced Applications, Thermal Spray 2007: Global Coating Solutions, on CD-ROM, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., May 14-16, 2007 (Beijing, China), ASM International, 2007

  23. F. Muggli, R. Molz, R. McCullough, and D. Hawley, Improvement of Plasma Gun Performance Using Comprehensive Fluid Element Modeling I, Thermal Spray 2007: Global Coating Solutions, on CD-ROM, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., May 14-16, 2007 (Beijing, China), ASM International, 2007

  24. K. Bobzin, N. Bagcivan, and I. Petkovic, Numerical and Experimental Determination of Plasma Temperature During Air Plasma Spraying with a Multiple Cathodes Torch, J. Mater. Process. Technol., 2011, 211(10), p 1620-1628

    Article  Google Scholar 

  25. K. Bobzin, N. Kopp, T. Warda, M. Schäfer, and M. Öte, A Numerical Investigation: Influence of the Operating Gas on the Flow Characteristics of a Three-Cathode Air Plasma Spraying System, Thermal Spray 2013: Innovative Coating Solutions for the Global Economy, Springer, 2013, May 13-15, 2013, p 400-405

  26. K. Bobzin and M. Öte, A Numerical Investigation: Air Plasma Spraying by Means of a Three-Cathode Spraying Torch, Thermal Spray Bulletin, 2015, 8(2), p 118-125

    Google Scholar 

  27. A.B. Murphy, Transport Coefficients of Argon, Nitrogen, Oxygen, Argon-Nitrogen, and Argon-Oxygen Plasmas, Plasma Chem. Plasma Process., 1994, 14(4), p 451-490

    Article  Google Scholar 

  28. A.B. Murphy, Transport Coefficients of Hydrogen and Argon-Hydrogen Plasmas, Plasma Chem. Plasma Process., 2000, 20(3), p 279-297

    Article  Google Scholar 

  29. C. Baudry, A. Vardelle, and G. Mariaux, Numerical Modeling of a DC Non-transferred Plasma Torch: Movement of the Arc Anode Attachment and Resulting Anode Erosion, High Temp. Plasma Process., 2005, 9, p 1-15

    Article  Google Scholar 

  30. E. Moreau, C. Chazelas, G. Mariaux, and A. Vardelle, Modeling of the Restrike Mode Operation of a DC Plasma Spray Torch, J. Therm. Spray Technol., 2006, 15(4), p 524-530

    Article  Google Scholar 

  31. J.P. Trelles, E. Pfender, and J.V.R. Heberlein, Modeling of the Arc Reattachment Process in Plasma Torches, J. Phys. D, 2007, 40, p 5635-5648

    Article  Google Scholar 

  32. M. Alaya, C. Chazelas, G. Mariaux, and A. Vardelle, Arc-Cathode Coupling in the Modeling of a Conventional DC Plasma Spray Torch, J. Therm. Spray Technol., 2015, 24(1-2), p 3-10

    Google Scholar 

  33. E. Ghedini and V. Colombo, Time Dependent 3D Large Eddy Simulation of a DC Non-transferred Arc Plasma Spraying Torch with Particle Injection, AUTORI, VARI, 18th International Symposium on Plasma Chemistry Abstract and Full-Papers CD, International Plasma Chemistry Society, KYOTO, 2007, p 115

    Google Scholar 

  34. J.E. Bardina, P.G. Huang, and T.J. Coakley, Turbulence Modeling Validation, Testing and Development, 1997, NASA Technical Memorandum 110446

  35. J. Menart and S. Malik, Net Emission Coefficients for Argon-Iron Thermal Plasmas, J. Phys. D, 2002, 35(9), p 2002. doi:10.1088/0022-3727/35/9/306

    Article  Google Scholar 

  36. A. Gleizes, J.J. Gonzalez, B. Liani, and G. Raynal, Calculation of Net Emission Coefficient of Thermal Plasmas in Mixtures of Gas with Metallic Vapour, J. Phys. D, 1993, 26(11), p 1921-1927

    Article  Google Scholar 

  37. J. Menart, J. Heberlein, and E. Pfender, Line-by-Line Method of Calculating Emission Coefficients for Thermal Plasmas Consisting of Monatomic Species, J. Quant. Spectrosc. Radiat. Transf., 1996, 56(3), p 377-398

    Article  Google Scholar 

  38. B. Liani, M. Rahmouni, A.H. Belbachir, H. Riad, and A. Gleizes, Computation of Net Emission of CH4-H2 Thermal Plasmas, J. Phys. D, 1997, 30(21). doi:10.1088/0022-3727/30/21/010

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the German Research Foundation (DFG) within the Project “Homogenization of Coating Properties in Atmospheric Plasma Spraying” (PAK 193/BO1979/7-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Öte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobzin, K., Öte, M. Modeling Multi-Arc Spraying Systems. J Therm Spray Tech 25, 920–932 (2016). https://doi.org/10.1007/s11666-016-0407-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0407-7

Keywords

Navigation