Skip to main content
Log in

La2Zr2O7 (LZ) Coatings by Liquid Feedstock Plasma Spraying: The Role of Precursors

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Solution precursor plasma spraying (SPPS) is an innovative process for obtaining finely structured coatings from metallic salt solutions. Lanthanum and zirconium precursors were studied to understand their influence on lanthanum zirconate (La2Zr2O7) synthesis by SPPS. Thermal analysis revealed that the nature of the precursor and the solvent affected mixture decomposition by changing the decomposition temperature. The surface tensions of precursor solutions in various media were investigated and revealed the influence of the nature of the counter-cation. Different solutions of precursor mixtures were used to obtain La2Zr2O7 splats on metallic substrates. A decrease in solution surface tension led to an increase in splat size. Coating mechanisms by SPPS are governed by the nature of the precursors and solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Wang, R.W. Snidle, and L. Gu, Rolling contact silicon nitride bearing technology: a review of recent research, Wear, 2000, 246, p 159-173

    Article  Google Scholar 

  2. L. Ostergen and J. Wigren, TBC systems in space nozzles, Collection of Technical Papers—43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference 2007, 2007, p 4583-4589

  3. R.J. Bratton and S.K. Lau, Zirconia Thermal Barrier Coatings, Science and Technology of Zirconia II, A.H. Heuer and L.W. Hobbs, Ed., American Ceramic Society, Columbus, 1981, p 226-253

  4. X. Cao, R. Vassen, and D. Stöver, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24, p 1-10

    Article  Google Scholar 

  5. R. Vassen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205, p 930-942

    Article  Google Scholar 

  6. J.R. Brandon and R. Taylor, Phase Stability of Zirconia-Based Thermal Barrier Coatings Part I, Zirconia-Yttria Alloys, Surf. Coat. Technol., 1991, 45, p 75-90

    Article  Google Scholar 

  7. J.D. Ballard, J. Davenport, C. Lewis, R.H. Doremus, L.S. Schadler, and W. Nelson, Phase Stability of Thermal Barrier Coatings Made from 8 wt.% Yttria Stabilized Zirconia: A Technical Note, J. Therm. Spray Technol., 2003, 12, p 34-37

    Article  Google Scholar 

  8. M. Arhens, S. Lampenscherf, R. Vassen, and D. Stöver, Sintering and Creep Processes in Plasma-Sprayed Thermal Barrier Coating, J. Therm. Spray Technol., 2004, 13, p 432-442

    Article  Google Scholar 

  9. D. Zhu and R.A. Miller, Sintering and Creep Behavior of Plasma-Sprayed Zirconia- and Hafnia-Based Thermal Barrier Coating, Surf. Coat. Technol., 1998, 108–109, p 114-120

    Article  Google Scholar 

  10. R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stöver, Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc., 1999, 83, p 2023-2028

    Article  Google Scholar 

  11. X. Cao, R. Vassen, F. Tietz, W. Jungen, and D. Stöver, Thermal Stability of Lanthanum Zirconate Plasma-Sprayed Coating, J. Am. Ceram. Soc., 2001, 84, p 2086-2090

    Article  Google Scholar 

  12. J. Wu, X. Wei, N.P. Padture, P.G. Klemens, M. Gell, E. Garcia, P. Miranzo, and M.I. Osendi, Low-Thermal Conductivity Rare-Earth Zirconates for Potential Thermal Barriers Coatings Applications, J. Am. Ceram. Soc., 2002, 85, p 3031-3035

    Article  Google Scholar 

  13. A. Guignard, G. Mauer, R. Vassen, and D. Stöver, Deposition and Characteristics of Submicrometer-Structured Thermal Barrier Coatings by Suspension Plasma Spraying, J. Therm. Spray Technol., 2012, 21, p 416-424

    Article  Google Scholar 

  14. Y. Wang, J.-G. Legoux, R. Neagu, S. Hui, and B.R. Marple, Suspension Plasma Spray and Performance Characterization of Half Cells with NiO/YSZ Anode and YSZ Electrolyte, J. Therm. Spray Technol., 2012, 21, p 7-15

    Article  Google Scholar 

  15. L. Latka, L. Pawlowski, D. Chicot, C. Pierlot, and F. Petit, Mechanical Properties of Suspension Plasma Sprayed Hydroxyapatite Coatings Submitted to Simulated Body Fluid, Surf. Coat. Technol., 2010, 205, p 954-960

    Article  Google Scholar 

  16. O. Tingaud, P. Bertrand, and G. Bertrand, Microstructure and Tribological Behavior of Suspension Plasma Sprayed Al2O3 and Al2O3-YSZ Composite Coatings, Surf. Coat. Technol., 2001, 205, p 1004-1008

    Article  Google Scholar 

  17. P. Fauchais, V. Rat, J.F. Coudert, R. Etchart-Salas, and G. Montavon, Operating Parameters for Suspension and Solution Plasma-Spray Coatings, Surf. Coat. Technol., 2008, 202, p 4309-4317

    Article  Google Scholar 

  18. L. Xie, X. Ma, A. Ozturk, E.H. Jordan, N.P. Padture, B.M. Cetegen, D.T. Xiao, and M. Gell, Processing Paremeter Effects on Solution Precursor Plasma Spray Process Spray Patterns, Surf. Coat. Technol., 2004, 183, p 51-61

    Article  Google Scholar 

  19. C.K. Muoto, E.H. Jordan, M. Gell, and M. Aindow, Identification of Desirable Precursor Properties for Solution Precursor Plasma Spray, J. Therm. Spray Technol., 2011, 20, p 802-816

    Article  Google Scholar 

  20. M. Gell, E.H. Jordan, M. Teicholz, B.M. Cetegen, N.P. Padture, L. Xie, D. Chen, X. Ma, and J. Roth, Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2008, 17, p 124-135

    Article  Google Scholar 

  21. C.S. Dutcher, A.S. Wexler, and S.L. Clegg, Surface Tensions of Inorganic Multicomponent Aqueous Electrolyte Solutions and Melts, J. Phys. Chem. A, 2010, 114, p 12216-12230

    Article  Google Scholar 

  22. P.K. Weissenborn and R.J. Pugh, Surface Tension of Aqueous Solutions of Electrolytes: Relationship with Ion Hydratation, Oxygen Solubility, and Bubble Coalescence, J. Colloid Interface Sci., 1996, 184, p 550-563

    Article  Google Scholar 

  23. R.I. Slavchov and J.K. Novev, Surface Tension of Concentrated Electrolyte Solutions, J. Colloid Interface Sci., 2012, 387, p 234-243

    Article  Google Scholar 

  24. E.R.A. Lima, B.M. de Melo, L.T. Baptista, and M.L.L. Paredes, Specific Ion Effects on the Interfacial Tension of Water/Hydrocarbon Systems, Braz. J. Chem. Eng., 2013, 30, p 55-62

    Article  Google Scholar 

  25. J. Fazilleau, C. Delbos, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 1: Suspension Injection and Behavior, Plasma Chem. Plasma Process., 2006, 26, p 371-391

    Article  Google Scholar 

  26. P. Fauchais, R. Etchart-Salas, V. Rat, J.F. Coudert, N. Caron, and K. Wittmann-Ténèze, Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions, J. Therm. Spray Technol., 2008, 17, p 31-59

    Article  Google Scholar 

  27. A. Joulia, Contribution au développement de barrières thermiques pour la propulsion spatiale par projection plasma d’intrants liquides (Contribution to the development of thermal barriers for space propulsion by liquid feedstocks plasma spraying), Ph.D. Thesis, Limoges University, 2013 [in French]

  28. R.D. Cadle, Particle Size Theory and Industrial Applications, Reinhold Publishing Corp, New York, 1965

    Google Scholar 

  29. T. Allen, Particle Size Measurement, 3rd ed., Chapman and Hall, New York, 1981

    Book  Google Scholar 

  30. D.R. Lide, CRC Handbook of Chemistry and Physics, 79th ed., CRC Press, Boca Raton, 1998

    Google Scholar 

  31. R.C. Weast, CRC Handbook of Chemistry and Physics, 62nd ed., CRC Press, Boca Raton, 1981

    Google Scholar 

  32. A.H. Pelofsky, Surface Tension-Viscosity Relation for Liquids, J. Chem. Eng. Data, 1966, 11, p 394-397

    Article  Google Scholar 

  33. H. Ghahremani, A. Moradi, J. Abedini-Torghabeh, and S.M. Hassani, Measuring Surface Tension of Binary Mixtures of Water + Alcohols from the Diffraction Pattern of Surface Ripples, Der Chim. Sin., 2011, 2, p 212-221

    Google Scholar 

  34. Y.F. Yano, Correlation Between Surface and Bulk Structures of Alcohol-Water Mixtures, J. Colloid Interface Sci., 2005, 284, p 255-259

    Article  Google Scholar 

  35. G. Vazquez, E. Alvarez, and J.M. Navaza, Surface Tension of Alcohol Water + Water from 20 to 50 °C, J. Chem. Eng. Data, 1995, 40, p 611-614

    Article  Google Scholar 

  36. W. Duarte, S. Rossignol, and M. Vardelle, La2Zr2O7 (LZ) Coatings by Liquid Feedstock Plasma Spraying: The Role of Precursors, ICACC 2014 conference proceeding, Jan 26-31, 2014 (Daytona Beach) (Submitted).

  37. M. Karppinen, P. Kylakoski, L. Niinisto, and C. Rodellas, Thermal Decomposition as a Preparative Route to Anhydrous Rare Earth Nitrates, J. Therm. Anal., 1989, 35, p 347-353

    Article  Google Scholar 

  38. W.W. Wendlandt, The Thermolysis of the Rare Earth and Other Metal Nitrates, Anal. Chem. Acta, 1956, 15, p 435-439

    Article  Google Scholar 

  39. G.A.M. Hussein, Rare Earth Metal Oxides: Formation, Characterization and Catalytic Activity. Thermoanalytical and Applied Pyrolysis, J. Anal. Appl. Pyrolysis, 1996, 37, p 111-149

    Article  Google Scholar 

  40. E. Ingier-Stocka and M. Maciejewski, Thermal Decomposition of [Co(NH3)6]2·4H2O II. Identification of the Gaseous Products, Thermochim. Acta, 2005, 432, p 56-69

    Article  Google Scholar 

  41. G. Rootzoll, High-Temperature Pyrolysis of Ethanol, J. Anal. Appl. Pyrolysis, 1985, 9, p 43-52

    Article  Google Scholar 

  42. A.R. Kamali, D.J. Fray, and C. Schwandt, Thermokinetic Characteristics of Lithium Chloride, J. Therm. Anal. Calorim., 2011, 104, p 619-626

    Article  Google Scholar 

  43. G.V. Buxton, M. Bydder, G.A. Salmon, and J.E. Williams, The Reactivity of Chlorine Atoms in Aqueous Solution, Phys. Chem. Chem. Phys., 2010, 2, p 237-245

    Article  Google Scholar 

  44. D. Hoffmann, B. Weigert, P. Bargazhi, and H. Herrmann, Reactivity of Poly-Alcohols Towards OH, NO3, SO -4 in Aqueous Solution, Phys. Chem. Chem. Phys., 2009, 11, p 9351-9363

    Article  Google Scholar 

  45. H. Herrmann, M. Exner, and R. Zellner, Reactivity Trends in Reactions of the Nitrate Radical (NO3) with Inorganic and Organic Cloudwater Constituents, Geochim. Cosmochim. Acta, 1994, 58, p 3239-3244

    Article  Google Scholar 

  46. L.H. Peng, C.J. Tsai, Y.C. Ling, S.D. Wang, and C.Y. Hsu, Thermal Decomposition Characteristics of Poly[diethyl-2-(methacryloyoxy)ethyl phosphate] Using Thermogravimetric Analysis/Mass Spectrometry, J. Appl. Polym. Sci., 2002, 85, p 821-830

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the DGA (French Ministry of Defense) and CNES National R&T program for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Rossignol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, W., Rossignol, S. & Vardelle, M. La2Zr2O7 (LZ) Coatings by Liquid Feedstock Plasma Spraying: The Role of Precursors. J Therm Spray Tech 23, 1425–1435 (2014). https://doi.org/10.1007/s11666-014-0131-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0131-0

Keywords

Navigation