Skip to main content
Log in

Influence of Al2O3 Nanoparticles on Microstructure and Strengthening Mechanism of Al-Based Nanocomposites Produced via Spark Plasma Sintering

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Spark plasma sintering (SPS) has been recognized, in the recent past, as a very useful method to produce metal matrix composites with enhanced mechanical and wear properties. Obviously, the materials’ properties are strongly related to the reinforcement types and percentages as well as to the processing parameters employed during synthesis. The present paper examines the effect of 2 wt.% of Al2O3 nanoparticles on mechanical and microstructural behaviors of Al-based metal matrix composites produced via SPS. The composite mechanical properties were evaluated through micro-, nanoindentation and tensile tests. The microstructural evolution was studied through scanning electron microscopy observations. It was found that the addition of nanoparticles produces the reduction of materials porosity and the improvement of mechanical properties in SPSed materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.K. Koli, G. Agnihotri, and R. Purohit, A Review on Properties, Behaviour and Processing Methods for Al-Nano Al2O3 Composites, Procedia Mater. Sci., 2014, 6, p 567–589

    Article  Google Scholar 

  2. M.T. Khorshid, S.J. Jahromi, and M. Moshksar, Mechanical Properties of Tri-Modal Al Matrix Composites Reinforced by Nano-and Submicron-Sized Al2O3 Particulates Developed by Wet Attrition Milling and Hot Extrusion, Mater. Des., 2010, 31(8), p 3880–3884

    Article  Google Scholar 

  3. Z.R. Hesabi, A. Simchi, and S.M.S. Reihani, Structural Evolution During Mechanical Milling of Nanometric and Micrometric Al2O3 Reinforced Al Matrix Composites, Mater. Sci. Eng, 2006, A428(1–2), p 159–168

    Article  Google Scholar 

  4. R. Casati, F. Bonollo, D. Dellasega, A. Fabrizi, G. Timelli, A. Tuissi, and M. Vedani, Ex Situ Al-Al2O3 Ultrafine Grained Nanocomposites Produced Via Powder Metallurgy, J. Alloys Compd., 2014, 615, p S386–S388

    Article  Google Scholar 

  5. S.C. Tjong, Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties, Adv. Eng. Mater., 2007, 9(8), p 639–652

    Article  Google Scholar 

  6. Y.-C. Kang and S.L.-I. Chan, Tensile Properties of Nanometric Al2O3 Particulate-Reinforced Aluminum Matrix Composites, Mater. Chem. Phys., 2004, 85(2–3), p 438–443

    Article  Google Scholar 

  7. G. Sweet, M. Brochu, R. Hexemer, I. Donaldson, and D. Bishop, Consolidation of Aluminum-Based Metal Matrix Composites Via Spark Plasma Sintering, Mater. Sci. Eng., A, 2015, 648, p 123–133

    Article  Google Scholar 

  8. N. Al-Aqeeli, G. Mendoza-Suarez, C. Suryanarayana, and R. Drew, Development of New Al-Based Nanocomposites by Mechanical Alloying, Mater. Sci. Eng., 2008, A480(1), p 392–396

    Article  Google Scholar 

  9. C. Suryanarayana, Synthesis of Nanocomposites by Mechanical Alloying, J. Alloys Compd., 2011, 509, p S229–S234

    Article  Google Scholar 

  10. S.C. Tjong and Z.Y. Ma, Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites, Mater. Sci. Eng., 2000, R29(3), p 49–113

    Article  Google Scholar 

  11. Y. Peng, M. Zhi, and S.C. Tjong, Structure, Thermal and Mechanical Properties of in Situ Al-Based Metal Matrix Composite Reinforced With Al2O3 and TiC Submicron Particles, Mater. Chem. Phys., 2005, 93(1), p 109–116

    Article  Google Scholar 

  12. R. German, Powder Metallurgy, 2nd ed., Wiley, New York, 1994

    Google Scholar 

  13. F.A. Khalid, O. Beffort, U.E. Klotz, B.A. Keller, P. Gasser, and S. Vaucher, Study of Microstructure and Interfaces in an Aluminium-C60 Composite Material, Acta Mater., 2003, 51(15), p 4575–4582

    Article  Google Scholar 

  14. K. Dash, D. Chaira, and B.C. Ray, Synthesis and Characterization of Aluminium-Alumina Micro- and Nano-Composites by Spark Plasma Sintering, Mater. Res. Bull., 2013, 48, p 2535–2542

    Article  Google Scholar 

  15. E. Ghasali, M. Alizadeh, and T. Ebadzadeh, Mechanical and Microstructure Comparison Between Microwave and Spark Plasma Sintering of Al-B4C Composite, J. Alloys Compd., 2016, 655, p 93–98

    Article  Google Scholar 

  16. E. Ghasali, A. Pakseresht, A. Rahbari, H. Eslami-shahed, M. Alizadeh, and T. Ebadzadeh, Mechanical Properties and Microstructure Characterization of Spark Plasma and Conventional Sintering of AleSiCeTiC Composites, J. Alloys Compd., 2016, 666, p 366–371

    Article  Google Scholar 

  17. C. Wolff, S. Mercier, H. Couque, and A. Molinari, Modeling of Conventional Hot Compaction and Spark Plasma Sintering based on Modified Micromechanical Models of Porous Materials, Mech. Mater., 2012, 49, p 72–91

    Article  Google Scholar 

  18. Z.-F. Liu, Z.-H. Zhang, J.-F. Lu, A.V. Korznikov, E. Korznikova, and F.-C. Wang, Effect of Sintering Temperature on Microstructures and Mechanical Properties of Spark Plasma Sintered Nanocrystalline Aluminum, Mater. Des., 2014, 64, p 625–630

    Article  Google Scholar 

  19. Z.A. Munir, V. Dat, and A. Quach, Grain-Boundary Enthalpies of Cubic Yttria-Stabilized Zirconia, J. Am. Ceram. Soc., 2011, 94(7), p 1–19

    Article  Google Scholar 

  20. K.L. Firesteina, S. Corthay, A.E. Steinman, A.T. Matveev, A.M. Kovalskii, I.V. Sukhorukova, D. Golberg, and D.V. Shtansky, High-Strength Aluminum-Based Composites Reinforced with BN, AlB2 and AlN Particles Fabricated Via Reactive Spark Plasma Sintering of Al-BN Powder Mixtures, Mater. Sci. Eng., A, 2017, 681, p 1–9

    Article  Google Scholar 

  21. N.K. Babu, K. Kallip, M. Leparoux, K.A. AlOgab, X. Maeder, and Y.A. Rojas, Dasilva, Influence of Microstructure and Strengthening Mechanism of AlMg5-Al2O3 Nanocomposites Prepared Via Spark Plasma Sintering, Mater. Des., 2016, 95, p 534–544

    Article  Google Scholar 

  22. Z. Tan, L. Wang, Y. Xue, P. Zhang, T. Cao, and X. Cheng, High-Entropy Alloy Particle Reinforced Al-Based Amorphous Alloy Composite with Ultrahigh Strength Prepared by Spark Plasma Sintering, Mater. Des., 2016, 109, p 219–226

    Article  Google Scholar 

  23. S. Mula, K. Mondal, S. Ghosh, and S.K. Pabi, Structure and Mechanical Properties of Al-Ni-Ti Amorphous Powder Consolidated by Pressure-Less, Pressure-Assisted and Spark Plasma Sintering, Mater. Sci. Eng., A, 2010, 527, p 3757–3763

    Article  Google Scholar 

  24. J. Zhanga, H. Shi, M. Cai, L. Liu, and P. Zhai, The Dynamic Properties of SiCp/Al Composites Fabricated by Spark Plasma Sintering with Powders Prepared by Mechanical Alloying Process, Mater. Sci. Eng., A, 2009, 527, p 218–224

    Article  Google Scholar 

  25. G.A. Sweet, M. Brochu, R.L. Hexemer, Jr., I.W. Donaldson, and D.P. Bishop, Consolidation of Aluminum-Based Metal Matrix Composites Via Spark Plasma Sintering, Mater. Sci. Eng., 2015, A648, p 123–133

    Article  Google Scholar 

  26. W. Daoush, A. Francis, Y. Lin, and R. German, An Exploratory Investigation on the In Situ Synthesis of SiC/AlN/Al Composites by Spark Plasma Sintering, J. Alloys Compd., 2015, 622, p 458–462

    Article  Google Scholar 

  27. Z. Sadeghian, B. Lotfi, M.H. Enayati, and P. Beiss, Microstructural and Mechanical Evaluation of Al-TiB2 Nanostructured Composite Fabricated by Mechanical Alloying, J. Alloys Compd., 2011, 509, p 7758–7763

    Article  Google Scholar 

  28. K. Mizuuchi, K. Inoue, Y. Agari, T. Nagaoka, M. Sugioka, M. Tanaka, T. Takeuchi, J. Tani, M. Kawahara, Y. Makino, and M. Ito, Processing and Thermal Properties of Al/AlN Composites in Continuous Solid-Liquid Co-Existent State by Spark Plasma Sintering, Compos. B, 2012, 43, p 1557–1563

    Article  Google Scholar 

  29. M.O. Durowoju, E.R. Sadiku, S. Diouf, M.B. Shongwe, and P.A. Olubambi, Spark Plasma Sintering of Graphite-Aluminum Powder Reinforced with SiC/Si Particles, Powder Technol., 2015, 284, p 504–513

    Article  Google Scholar 

  30. S. Diouf and A. Molinari, Densification Mechanisms in Spark Plasma Sintering: Effect of Particle Size and Pressure, Powder Technol., 2012, 221, p 220–227

    Article  Google Scholar 

  31. S. Devaraj, S. Sankaran, and R. Kumar, Influence of Spark Plasma Sintering Temperature on the Densification, Microstructure and Mechanical Properties of Al-4.5wt.% Cu Alloy, Acta Metall. Sin., 2013, 26(6), p 761–771

    Article  Google Scholar 

  32. S. Decker, S. Martin, and L. Krüger, Influence of Powder Particle Size on the Compaction Behavior and Mechanical Properties of a High-Alloy Austenitic CrMnNi TRIP Steel During Spark Plasma Sintering, Metall. Mater. Trans., 2016, A47(1), p 170–177

    Article  Google Scholar 

  33. E.A. Olevsky and L. Froyen, Impact of thermal diffusion on densification during SPS, J. Amer. Ceram. Soc., 2009, 92(s1).

  34. N. Saheb, M.S. Khan, and A.S. Hakeem, Effect of Processing on Mechanically Alloyed and Spark Plasma Sintered Al-Al2O3 Nanocomposites, J. Nanomater., 2015, 16(1), p 377

    Google Scholar 

  35. J.J. Grácio, C.R. Picu, G. Vincze, N. Mathew, T. Schubert, A. Lopes, and C. Buchheim, Mechanical Behavior of Al-SiC Nanocomposites Produced by Ball Milling and Spark Plasma Sintering, Metall. Mater. Trans., 2013, A44(11), p 5259–5269

    Article  Google Scholar 

  36. J. Garay, Current-Activated, Pressure-Assisted Densification Of Materials, Annu. Rev. Mater. Res., 2010, 40, p 445–468

    Article  Google Scholar 

  37. R. Casati, Aluminum Matrix Composites Reinforced with Alumina Nanoparticles, PoliMi Springer Briefs, 2015, doi:10.1007/978-3-319-27732-5_5

    Google Scholar 

  38. F. He, Q. Han, and M.J. Jackson, Nanoparticulate Reinforced Metal Matrix Nanocomposites—A Review, Int. J. Nanoparticles, 2008, 1(4), p 301–309

    Article  Google Scholar 

  39. H. Asgharzadeh, A. Simchi, and H.S. Kim, Microstructural Features, Texture and Strengthening Mechanisms of Nanostructured AA6063 Alloy Processed by Powder Metallurgy, Mater. Sci. Eng., 2011, A528(12), p 3981–3989

    Article  Google Scholar 

  40. K. Deng, J. Shi, C. Wang, X. Wang, Y. Wu, K. Nie, and K. Wu, Microstructure and Strengthening Mechanism of Bimodal Size Particle Reinforced Magnesium Matrix Composite, Compos. A, 2012, 43(8), p 1280–1284

    Article  Google Scholar 

  41. J. Pelleg, Mechanical Properties of Materials, Springer, New York, 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cavaliere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, B., Shamanian, M., Ashrafizadeh, F. et al. Influence of Al2O3 Nanoparticles on Microstructure and Strengthening Mechanism of Al-Based Nanocomposites Produced via Spark Plasma Sintering. J. of Materi Eng and Perform 26, 2928–2936 (2017). https://doi.org/10.1007/s11665-017-2699-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2699-2

Keywords

Navigation