Skip to main content
Log in

Microstructure, In Vitro Corrosion Behavior and Cytotoxicity of Biodegradable Mg-Ca-Zn and Mg-Ca-Zn-Bi Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of bismuth (Bi) addition on the microstructure and corrosion behavior of the Mg-Ca-Zn-Bi alloys were evaluated using electron microscopy, electrochemical test and electrochemical impedance spectroscopy. Microstructural observations showed that Mg-1.2Ca-1Zn-xBi (x = 0.5, 1.5, 3 wt.%) are composed of Mg2Ca, Ca2Mg6Zn3 and Mg3Bi2 phases while a new phase Mg2Bi2Ca appeared after the addition of 5 and 12 wt.% Bi to the Mg-1.2Ca-1Zn alloy. Furthermore, the additions of 0.5 wt.% Bi to the Mg-1.2Ca-1Zn alloy slightly improved the corrosion behavior of the alloy, while further increase in Bi amount from 1.5 to 12 wt.% has a deleterious effect on the corrosion behavior of the ternary Mg-1.2Ca-1Zn alloy which is driven by galvanic coupling effect. Cytotoxicity tests indicate that the Mg-1.2Ca-1Zn presents higher cell viability compared to Mg-1.2Ca-1Zn-0.5Bi alloy. In addition, the cell viability of both alloys increased with increasing incubation time while diluting the extracts to 50% and 10% improved the cell viabilities. The present results suggest that the Mg-1.2Ca-1Zn-0.5Bi can be interesting candidate for the development of degradable biomaterials and it is worthwhile for further investigation in an in vivo environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D. Tie, F. Feyerabend, N. Hort et al., In Vitro Mechanical and Corrosion Properties of Biodegradable Mg-Ag Alloys, Mater. Corros., 2014, 65, p 569–576

    Article  Google Scholar 

  2. J. Zhou, Q. Li, H. Zhang, and F. Chen, Corrosion Behavior of AZ91D Magnesium Alloy in Three Different Physiological Environments, J. Mater. Eng. Perform., 2014, 23, p 181–186

    Article  Google Scholar 

  3. S. Remennik, I. Bartsch, E. Willbold et al., New, fast corroding High Ductility Mg-Bi-Ca and Mg-Bi-Si Alloys, with No Clinically Observable Gas Formation in Bone Implants, Mater. Sci. Eng. B, 2011, 176, p 1653–1659

    Article  Google Scholar 

  4. F. Witte, V. Kaese, H. Haferkamp, E. Switzer et al., In Vivo Corrosion of Four Magnesium Alloys and the Associated Bone Response, Biomaterials, 2005, 26, p 3557–3563

    Article  Google Scholar 

  5. N.G. Wang, R.C. Wang, C.Q. Peng, and Y. Feng, Corrosion Behavior of Magnesium Alloy AP65 in 3.5% Sodium Chloride Solution, J. Mater. Eng. Perform., 2012, 21, p 1300–1308

    Article  Google Scholar 

  6. H.R. Bakhsheshi-Rad, E. Hamzah, M. Daroonparvar et al., Fabrication and Corrosion Behavior of Si/HA Nano-composite Coatings on Biodegradable Mg-Zn-Mn-Ca Alloy, Surf. Coat. Technol., 2014, 258, p 1090–1099

    Article  Google Scholar 

  7. X.N. Gu and Y.F. Zheng, A Review on Magnesium Alloys as Biodegradable Materials, Front. Mater. Sci. China, 2010, 4, p 111–115

    Article  Google Scholar 

  8. F. Witte and N. Hort, Degradable Biomaterials Based on Magnesium Corrosion, Curr. Opin. Solid State Mater. Sci., 2008, 12, p 63–72

    Article  Google Scholar 

  9. H.R. Bakhsheshi-Rad, E. Hamzah, M. Daroonparvar et al., Bi-Layer Nano-TiO2/FHA Composite Coatings on Mg-Zn-Ce Alloy Prepared by Combined Physical Vapour Deposition and Electrochemical Deposition Methods, Vacuum, 2014, 110, p 127–135

    Article  Google Scholar 

  10. G. Song, Control of Biodegradation of Biocompatable Magnesium Alloys, Corros. Sci., 2007, 49, p 1696–1701

    Article  Google Scholar 

  11. M. Maguire and J. Cowan, Magnesium Chemistry and Biochemistry, Biometals, 2002, 15, p 203–210

    Article  Google Scholar 

  12. E. Ghali, W. Dietzel, and K.U. Kainer, General and Localized Corrosion of Magnesium Alloys: A Critical Review, J. Mater. Eng. Perform., 2013, 22, p 2875–2891

    Article  Google Scholar 

  13. M.C. Lopes de Oliveira, V.S. Marques Pereira, O.V. Correa, and R.A. Antunes, Corrosion Performance of Anodized AZ91D Magnesium Alloy: Effect of the Anodizing Potential on the Film Structure and Corrosion Behavior, J. Mater. Eng. Perform., 2014, 23, p 593–603

    Article  Google Scholar 

  14. H.R. Bakhsheshi-Rad, E. Hamzah, M.R. Abdul-Kadir, Safaa N. Saud, M. Kasiri-Asgarani, and R. Ebrahimi-Kahrizsangi, The Mechanical Properties and Corrosion Behavior of Double-Layered Nano Hydroxyapatite-Polymer Coating on Mg-Ca Alloy, J. Mater. Eng. Perform., 2015, 24, p 4010–4021

    Article  Google Scholar 

  15. M. Daroonparvar, M.A. Mat Yajid, N.M. Yusof, H.R. Bakhsheshi-Rad, and E. Hamzah, Improvement of Corrosion Resistance of Binary Mg-Ca Alloys by Using Duplex Aluminum-Chromium Coatings, J. Mater. Eng. Perform., 2015, 24, p 2614–2627

    Article  Google Scholar 

  16. D. Zander and N.A. Zumdick, Influence of Ca and Zn on the Microstructure and Corrosion of Biodegradable Mg-Ca-Zn alloys, Corros. Sci., 2015, 93, p 222

    Article  Google Scholar 

  17. B.L. Mordike and T. Ebert, Magnesium: Properties—Applications—Potential, Mater. Sci. Eng. A, 2001, 302, p 37–45

    Article  Google Scholar 

  18. H.R. Bakhsheshi-Rad, E. Hamzah, S. Farahany, and M. Staiger, The Mechanical Properties and Corrosion Behavior of Quaternary Mg-6Zn-0.8Mn-xCa Alloys, J. Mater. Eng. Perform., 2015, 24, p 598–608

    Article  Google Scholar 

  19. N. Kirkland, M. Staiger, D. Nisbet, C.J. Davies, and N. Birbilis, Performance-Driven Design of Biocompatible Mg Alloys, JOM, 2011, 63, p 28–34

    Article  Google Scholar 

  20. K. Hagihara, K. Fujii, A. Matsugaki, and T. Nakano, Possibility of Mg- and Ca-Based Intermetallic Compounds as New Biodegradable Implant Materials, Mater. Sci. Eng. C, 2013, 33, p 4101–4111

    Article  Google Scholar 

  21. W.C. Kim, J.G. Kim, J.Y. Lee, and H.K. Seok, Influence of Ca on the Corrosion Properties of Magnesium for Biomaterials, Mater. Lett., 2008, 62, p 4146–4148

    Article  Google Scholar 

  22. H.R. Bakhsheshi-Rad, E. Hamzah, S.N. Saud, and M. Mamoun, Effect of Electrodeposition Parameters on the Microstructure and Corrosion Behavior of DCPD Coatings on Biodegradable Mg-Ca-Zn Alloy, Int. J. Appl. Ceram. Technol., 2015, 12, p 1054–1064

    Article  Google Scholar 

  23. S. Cai, T. Lei, N. Li, and F. Feng, Effects of Zn on Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn Alloys, Mater. Sci. Eng. C, 2012, 32, p 2570–2577

    Article  Google Scholar 

  24. W. Zhou, N.N. Aung, and Y. Sun, Effect of Antimony, Bismuth and Calcium Addition on Corrosion and Electrochemical Behaviour of AZ91 Magnesium Alloy, Corros. Sci., 2009, 51, p 403–408

    Article  Google Scholar 

  25. J.M. Stellman, Encyclopedia of Occupational Health and Safety—4 Volume Set, 4th Edition/Edition 4, International Labour Organisation, 1998

  26. Y.X. Wang, J.X. Zhou, J. Wang, T.J. Luo, and Y.S. Yang, Effect of Bi Addition on Microstructures and Mechanical Properties of AZ80 Magnesium Alloy, Trans. Nonferr. Met. Soc. China, 2011, 21, p 711–716

    Article  Google Scholar 

  27. T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27, p 2907–2915

    Article  Google Scholar 

  28. International Organization for Standardization, ISO-10993-5: biological evaluation of medical devices part 5: tests for cytotoxicity: in vitro methods, ANSI/AAMI, Arlington, VA, 2009

    Google Scholar 

  29. N.T. Kirkland, N. Birbilis, and J. Walker, In-Vitro Dissolution of Magnesium-Calcium Binary Alloys: Clarifying the Unique Role of Calcium Additions in Bioresorbable Magnesium Implant Alloys, Biomed. Mater. Res. B, 2010, 95B, p 91–100

    Article  Google Scholar 

  30. H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, and S. Farahany, Relationship Between the Corrosion Behavior and the Thermal Characteristics and Microstructure of Mg-0.5Ca-xZn Alloys, Corros. Sci., 2012, 64, p 184–197

    Article  Google Scholar 

  31. L. Lu, A.K. Dahle, J.A. Taylor, and D.H. Stjohn, Theoretical and Practical Considerations of Grain Refinement of Mg-Al Alloys, Mater. Sci. Forum, 2005, 488-489, p 299–302

    Article  Google Scholar 

  32. N.S. Saud, E. Hamzah, T. Abubakar, H.R. Bakhsheshi-Rad, M. Zamri, and M. Tanemura, Effects of Mn Additions on the Structure, Mechanical Properties, and Corrosion Behavior of Cu-Al-Ni Shape Memory Alloys, J. Mater. Eng. Perform., 2014, 23, p 3620–3629

    Article  Google Scholar 

  33. N.S. Saud, E. Hamzah, T. Abubakar, S. Farahany, and H.R. Bakhsheshi-Rad, Effects of Quenching Media on Phase Transformation Characteristics and Hardness of Cu-Al-Ni-Co Shape Memory Alloys, J. Mater. Eng. Perform., 2015, 24, p 1522–1530

    Article  Google Scholar 

  34. X. Ye, S. Cai, Y. Dou et al., Bioactive Glass-Ceramic Coating for Enhancing the In Vitro Corrosion Resistance of Biodegradable Mg Alloy, Appl. Surf. Sci., 2012, 259, p 799–805

    Article  Google Scholar 

  35. X. Lu, Y. Zuo, X. Zhao, Y. Tang, and X. Feng, The Study of a Mg-rich Epoxy Primer for Protection of AZ91D Magnesium Alloy, Corros. Sci., 2011, 53, p 153–160

    Article  Google Scholar 

  36. M. Sababi, J. Pan, P.-E. Augustsson, P.-E. Sundell, and P.M. Claesson, Influence of Polyaniline and Ceria Nanoparticle Additives on Corrosion Protection of a UV-Cure Coating on Carbon Steel, Corros. Sci., 2014, 84, p 189–197

    Article  Google Scholar 

  37. K.W. Guo, A Review of Magnesium/Magnesium Alloys Corrosion and Its Protection, Recent Pat. Corros. Sci., 2010, 2, p 13–21

    Article  Google Scholar 

  38. F. Witte, A. Eliezer, and S. Cohen, The History, Challenges and the Future of Biodegradable Metal Implants, Adv. Mat. Res., 2010, 95, p 3–7

    Article  Google Scholar 

  39. Q.F. Li, H.R. Weng, and Z.Y. Suo, Microstructure and Mechanical Properties of Bulk Mg-Zn-Ca Amorphous Alloys and Amorphous Matrix Composite, Mater. Sci. Eng. A, 2008, 487, p 301–308

    Article  Google Scholar 

  40. G. Manivasagam, D. Dhinasekaran, and A. Rajamanickam, Biomedical Implants: Corrosion and Its Prevention—A Review, Recent Pat. Corros. Sci., 2010, 2, p 40–54

    Article  Google Scholar 

  41. S. Zhang, J. Li, Y. Song, C. Zhao, X. Zhang et al., In Vitro Degradation, Hemolysis and MC3T3-E1 Cell Adhesion of Biodegradable Mg-Zn Alloy, Mater. Sci. Eng. C, 2009, 29, p 1907–1912

    Article  Google Scholar 

  42. Y. Pan, S. He, D. Wang, D. Huang et al., In Vitro Degradation and Electrochemical Corrosion Evaluations of Microarc Oxidized Pure Mg, Mg-Ca and Mg-Ca-Zn Alloys for Biomedical Applications, Mater. Sci. Eng. C, 2015, 47, p 85–96

    Article  Google Scholar 

  43. M. Ascencio, M. Pekguleryuz, and S. Omanovic, An investigation of the Corrosion Mechanisms of WE43 Mg Alloy in a Modified Simulated Body Fluid Solution: The Influence of Immersion Time, Corros. Sci., 2014, 87, p 489–503

    Article  Google Scholar 

  44. P. Yin, N.F. Li, T. Lei, L. Liu, and C. Ouyang, Effects of Ca on Microstructure, Mechanical and Corrosion Properties and Biocompatibility of Mg-Zn-Ca Alloys, J. Mater. Sci. Mater. Med., 2013, 24, p 1365–1373

    Article  Google Scholar 

  45. Y. Chen, Z. Xu, C. Smith, and J. Sankar, Recent Advances on the Development of Magnesium Alloys for Biodegradable Implants, Acta Biomater., 2014, 10, p 4561–4573

    Article  Google Scholar 

  46. B. Zhang, Y. Hou, X. Wang, Y. Wang, and L. Geng, Mechanical Properties, Degradation Performance and Cytotoxicity of Mg-Zn-Ca Biomedical Alloys with Different Compositions, Mater. Sci. Eng. C, 2011, 31, p 1667–1673

    Article  Google Scholar 

  47. F. Feyerabend, J. Fischer, J. Holtz, F. Witte et al., Evaluation of Short-Term Effects of Rare Earth and Other Elements Used in Magnesium Alloys on Primary Cells and Cell Lines, Acta Biomater., 2010, 6, p 1834–1842

    Article  Google Scholar 

  48. F.Y. Zhou, K.J. Qiu, H.F. Li, T. Huang et al., Screening on Binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) Alloys with Good In Vitro Cytocompatibility and Magnetic Resonance Imaging Compatibility, Acta Biomater., 2013, 9, p 9578–9587

    Article  Google Scholar 

  49. X. Gao, X. Zhang, Y. Wang, Y. Wang, S. Peng, and C. Fan, An In Vitro Study on the Cytotoxicity of Bismuth Oxychloride Nanosheets in Human HaCaT Keratinocytes, Food Chem. Toxicol., 2015, 80, p 52–61

    Article  Google Scholar 

  50. G.C. Sanderson, Acute Toxicity of Ingested Bismuth Alloy Shot in Game-Farm Mallards. Toxicity of Ingested Bismuth Alloy Shot in Game-Farm Mallards: Chronic Health Effects and Effects on Reproduction, Illinois Natural History Survey Bulletin, 1997

  51. G.C. Sanderson, W.L. Anderson, C.L. Foley, L.M. Skowron, J.D. Brawn, and J.W. Seets, Acute Toxicity of Ingested Bismuth Alloy Shot in Game Farm Mallards, Ill. Nat. Hist. Surv. Bull., 1997, 35(3), p 185–216

    Google Scholar 

  52. M.R. Bafandeh, R. Gharahkhani, and M.H. Fathi, Fabrication, Characterization and Osteoblast Response of Cobalt-Based Alloy/Nano Bioactive Glass Composites, J. Adv. Mater. Process., 2016, 4, p 3–13

    Google Scholar 

  53. H.R. Bakhsheshi-Rad, E. Hamzah, S. Bagheriyan et al., Preparation and Performance of Plasma/Polymer Composite Coatings on Magnesium Alloy. J. Mater. Eng. Perform., 2016, 25, p 3948–3959

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Ministry of Higher Education of Malaysia and Universiti Teknologi Malaysia (UTM) for providing research facilities and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Bakhsheshi-Rad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhsheshi-Rad, H.R., Hamzah, E., Tok, H.Y. et al. Microstructure, In Vitro Corrosion Behavior and Cytotoxicity of Biodegradable Mg-Ca-Zn and Mg-Ca-Zn-Bi Alloys. J. of Materi Eng and Perform 26, 653–666 (2017). https://doi.org/10.1007/s11665-016-2499-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2499-0

Keywords

Navigation