Skip to main content

Advertisement

Log in

Effects of Sodium Thiosulfate and Sodium Sulfide on the Corrosion Behavior of Carbon Steel in an MDEA-Based CO2 Capture Process

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion behavior of carbon steel has been tested in the presence of sodium thiosulfate and sodium sulfide in an MDEA-based CO2 capture system using electrochemical methods, weight loss measurements and surface analysis. The results of electrochemical measurements revealed that both thiosulfate and sulfide showed corrosion resistance properties to carbon steel corrosion. The corrosion resistance for the system with thiosulfate increased with concentration, while the system with sulfide yielded better corrosion resistance to carbon steel at lower concentrations as increase in sulfide concentration decreased the corrosion resistance. The corrosion inhibition behaviors for both systems at 0.05 M salt concentrations were confirmed by weight loss measurement, and the solution with sodium sulfide exhibited a better inhibition with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.C.M. Pires, F.G. Martins, M.C.M. Alvim-Ferraz, and M. Simoes, Recent Developments on Carbon Capture and Storage: An Overview, Chem. Eng. Res. Des., 2011, 89(9), p 1446–1460

    Article  Google Scholar 

  2. M. Wang, A. Lawal, P. Stephenson, J. Sidders, and C. Ramshaw, Post-Combustion CO2 Capture with Chemical Absorption: A State-of-the-Art Review, Chem. Eng. Res. Des., 2011, 89(9), p 1609–1624

    Article  Google Scholar 

  3. S. Rennie, Corrosion and Materials Selection for Amine Service, Mater. Forum, 2006, 30, p 126–130

    Google Scholar 

  4. M. Howard and A. Sargent, Texas Gas Plant Faces Ongoing Battle-With Oxygen Contamination, Oil Gas J., 2001, 99(30), p 52

    Google Scholar 

  5. A. Keller, N. Hatcher, in Amine Sampling/Laboratory Technique and its Effects on H2S Loading Measurements, Laurance Reid Gas Conditioning Conference, 2005, pp 85–93

  6. L. Dumee, C. Scholes, G. Stevens, and S. Kentish, Purification of Aqueous Amine Solvents Used in Post Combustion CO2 Capture: A Review, Int J Greenh Gas Con, 2012, 10, p 443–455

    Article  Google Scholar 

  7. M.S. DuPart, P.C. Rooney, and T.R. Bacon, Comparing Laboratory and Plant Data for MDEA/DEA Blends, Hydrocarb Process, 1999, 78(4), p 81–86

    Google Scholar 

  8. H. Lepaumier, S. Martin, D. Picq, B. Delfort, and P.L. Carrette, New Amines for CO2 Capture. III. Effect of Alkyl Chain Length Between Amine Functions on Polyamines Degradation, Ind. Eng. Chem. Res., 2010, 49(10), p 4553–4560

    Article  Google Scholar 

  9. H. Lepaumier, D. Picq, and P.L. Carrette, New Amines for CO2 Capture. I. Mechanisms of Amine Degradation in the Presence of CO2, Ind. Eng. Chem. Res., 2009, 48(20), p 9061–9067

    Article  Google Scholar 

  10. H. Lepaumier, D. Picq, and P.L. Carrette, New Amines for CO2 Capture. II. Oxidative Degradation Mechanisms, Ind. Eng. Chem. Res., 2009, 48(20), p 9068–9075

    Article  Google Scholar 

  11. S. Martin, H. Lepaumier, D. Picq, J. Kittel, T. de Bruin, A. Faraj, and P.L. Carrette, New Amines for CO2 Capture. IV. Degradation, Corrosion, and Quantitative Structure Property Relationship Model, Ind. Eng. Chem. Res., 2012, 51(18), p 6283–6289

    Article  Google Scholar 

  12. C.J. Smit, G.J. Van Heeringen, Van Grinsven P.F.A., in Degradation of Amine Solvents and Therelation with Operational Problems, Laurance Reid Gas Conditioning Conference, 2002, pp 197–212

  13. B.C. Friedman, in Understanding the Basics of Corrosion in Sweet and Sour Gas Treating Plants, Laurance Reid Gas Conditioning Conference, 2005, pp 183–205

  14. M. Nainar and A. Veawab, Corrosion in CO2 Capture Process Using Blended Monoethanolamine and Piperazine, Ind Eng Chem Res, 2009, 48(20), p 9299–9306

    Article  Google Scholar 

  15. T. Nguyen, M. Hilliard, and G.T. Rochelle, Amine Volatility in CO2 Capture, Int J Greenh Gas Con, 2010, 4(5), p 707–715

    Article  Google Scholar 

  16. G.T. Rochelle, Thermal Degradation of Amines for CO2 Capture, Curr Opin Chem Eng, 2012, 1(2), p 183–190

    Article  Google Scholar 

  17. S.M. Cohen, G.T. Rochelle, M.E. Webber, in Optimal operation of flexible post-combustion CO2 capture in response to volatile electricity prices, 10th International Conference on Greenhouse Gas Control Technologies, 4, 2604–2611 (2011) (in English)

  18. Q. Xu, G. Rochelle, in Total Pressure and CO2 solubility at high temperature in aqueous amines, 10th International Conference on Greenhouse Gas Control Technologies, vol 4, pp 117–124 (2011)

  19. A. Veawab, P. Tontiwachwuthikul, and A. Chakma, Influence of Process Parameters on Corrosion Behavior in a Sterically Hindered Amine-CO2 System, Ind. Eng. Chem. Res., 1999, 38(1), p 310–315

    Article  Google Scholar 

  20. D. Duan, Y.S. Choi, S. Nesic, F. Vitse, S.A. Bedell, and C. Worley, Effect of Oxygen and Heat Stable Salts on the Corrosion of Carbon Steel in MDEA-Based CO2 Capture Process, Corrosion/2010, Paper No. 10191, NACE, San Antonio, Texas, 2010

  21. S.A. Freeman, J. Davis, and G.T. Rochelle, Degradation of Aqueous Piperazine in Carbon Dioxide Capture, Int J Greenh Gas Con, 2010, 4(5), p 756–761

    Article  Google Scholar 

  22. P.C. Rooney, Dupart, M. S., Bacon, T.R., Oxygen’s Role in Alkanolamine Degradation. Hydrocarbon Processing (International Edition), 77(7), (1998)

  23. W. Tanthapanichakoon, A. Veawab, in Heat Stable Salts and Corrosivity in Amine Treating Units, ed by J.G. Kaya. Greenhouse gas control technologies—6th International Conference (Pergamon, 2003), p 1591–1594

  24. S. Srinivasan, A. Veawab, and A. Aroonwilas, Low Toxic Corrosion Inhibitors for Amine-Based CO2 Capture process, Enrgy Proced, 2013, 37, p 890–895

    Article  Google Scholar 

  25. H. Ma, X. Cheng, G. Li, S. Chen, Z. Quan, S. Zhao, and L. Niu, The Influence of Hydrogen Sulfide on Corrosion of Iron Under Different Conditions, Corros. Sci., 2000, 42(10), p 1669–1683

    Article  Google Scholar 

  26. E. Abelev, T.A. Ramanarayanan, and S.L. Bernasek, Iron Corrosion in CO2/Brine at Low H2S Concentrations: An Electrochemical and Surface Science Study, J. Electrochem. Soc., 2009, 156(9), p C331–C339

    Article  Google Scholar 

  27. D.W. Shoesmith, P. Taylor, M.G. Bailey, and D.G. Owen, The Formation of Ferrous Monosulfide Polymorphs During the Corrosion of Iron by Aqueous Hydrogen-Sulfide at 21-Degrees-C, J. Electrochem. Soc., 1980, 127(5), p 1007–1015

    Article  Google Scholar 

  28. W. Sun, S. Nesic, and S. Papavinasam, Kinetics of Corrosion Layer Formation. Part 2—Iron Sulfide and Mixed Iron Sulfide/Carbonate Layers in Carbon Dioxide/Hydrogen Sulfide Corrosion, Corrosion, 2008, 64(7), p 586–599

    Article  Google Scholar 

  29. ASTM Standard G31-72, Standard Practice of Laboratory Immersion Corrosion Testing of Metals, ASTMed., 2004

  30. K. Jüttner, Electrochemical Impedance Spectroscopy (EIS) of Corrosion Processes on Inhomogeneous Surfaces, Electrochim. Acta, 1990, 35(10), p 1501–1508

    Article  Google Scholar 

  31. D.A. López, S.N. Simison, and S.R. de Sánchez, Inhibitors Performance in CO2 Corrosion: EIS Studies on the Interaction Between their Molecular Structure and Steel Microstructure, Corros. Sci., 2005, 47(3), p 735–755

    Article  Google Scholar 

  32. C.N. Cao and J.Q. Zhang, An Introduction to Electrochemical Impedance Spectroscopy, Science Press, Beijing, 2002

    Google Scholar 

  33. W.A. Pryor, The Kinetics of the Disproportionation of Sodium Thiosulfate to Sodium Sulfide and Sulfate, J. Am. Chem. Soc., 1960, 82(18), p 4794–4797

    Article  Google Scholar 

  34. A. Veawab, P. Tontiwachwuthikul, and S.D. Bhole, Studies of Corrosion and Corrosion Control in a CO2-2-Amino-2-methyl-1-Propanol (AMP) Environment, Ind. Eng. Chem. Res., 1997, 36(1), p 264–269

    Article  Google Scholar 

  35. S. Sim, I.S. Cole, Y.S. Choi, and N. Birbilis, A Review of the Protection Strategies Against Internal Corrosion for The Safe Transport of Supercritical CO2 Via Steel Pipelines for CCS Purposes, Int J Greenh Gas Con, 2014, 29, p 185–199

    Article  Google Scholar 

  36. Y.S. Choi, S. Nesic, and S. Ling, Effect of H2S on the CO2 Corrosion of Carbon Steel in Acidic Solutions, Electrochim. Acta, 2011, 56(4), p 1752–1760

    Article  Google Scholar 

  37. S. Nešić, J.Y. Cai, and K.J. Lee, A Multiphase Flow and Internal Corrosion Prediction Model for Mild Steel Pipelines, Corrosion/2005, Paper No. 05556, NACE, Houston, Texas, 2005

  38. K. Fuseler and H. Cypionka, Elemental Sulfur as an Intermediate of Sulfide Oxidation with Oxygen by Desulfobulbus-Propionicus, Arch. Microbiol., 1995, 164(2), p 104–109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emori, W., Jiang, S.L., Duan, D.L. et al. Effects of Sodium Thiosulfate and Sodium Sulfide on the Corrosion Behavior of Carbon Steel in an MDEA-Based CO2 Capture Process. J. of Materi Eng and Perform 26, 335–342 (2017). https://doi.org/10.1007/s11665-016-2458-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2458-9

Keywords

Navigation