Skip to main content

Advertisement

Log in

HRTEM and Nanoindentation Studies of Bulk WC Nanocrystalline Materials Prepared by Spark Plasma Sintering of Ball-Milled Powders

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, mechanical milling technique using a high-energy ball mill was employed for preparing of nanoscaled WC grains powders with an average grain size of 7 nm in diameters of WC. The present study demonstrates a successful consolidation process achieved at 1250 °C for sintering of ball-milled WC powders into full dense bulk buttons (above 99.6%), using SPS technique. The as-consolidated WC bulk nanocrystalline buttons revealed high hardness value (~24 GPa) with low elastic modulus (~332 GPa). Moreover, they possessed a high fracture toughness (15 MPa m1/2) that has never been reported for pure WC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.X. Yan, M. Cai, and P.K. Shen, Nanosized tungsten carbide synthesized by a novel route at low temperature for high performance electrocatalysis, Sci. Rep., 2013, 3, p 1646. doi:10.1038/srep01646

    Google Scholar 

  2. M.S. El-Eskandarany, Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy, 2nd ed., Elsevier Inc., Oxford, 2015

    Google Scholar 

  3. M.S. El-Eskandarany, Fabrication of nanocrystalline WC and nanocomposite refractory materials at room temperature, J. Alloys Compd., 2000, 296, p 175–182

    Article  Google Scholar 

  4. V. Richter and M. Ruthendorf, On hardness and toughness of ultrafine and nanocrystalline hard materials, Int. J. Refract. Met. Hard Mater., 1999, 17, p 141–152

    Article  Google Scholar 

  5. M.S. El-Eskandarany et al., Synthesis of full-density nanocrystalline tungsten carbide by reduction of tungstic oxide at room temperature, Met. Trans., 1996, 27 A, p 4210–4213

    Article  Google Scholar 

  6. S. Grasso et al., Low-temperature spark plasma sintering of pure nano WC powder, J. Am. Ceram. Soc., 2013, doi:10.1111/jace.12365

    Google Scholar 

  7. B. Huang, L.D. Chen, and Q. Bais, Bulk ultrafine binderless WC prepared by spark plasma sintering, Scr. Mater., 2006, 54, p 441–445

    Article  Google Scholar 

  8. A.S. Kurlov and A.I. Gusev, Tungsten Carbides: Structure, Properties and Application in Hardmetals, 1st ed., Springer International Publishing, Cham, 2013

    Book  Google Scholar 

  9. A.S. Kurlov et al., Microstructure of nanocrystalline WC powders and WC-Co hard alloys, Rev. Adv. Mater. Sci., 2011, 27, p 165–172

    Google Scholar 

  10. Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, and H.Y. Sohn, Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide: a review, Int. J. Refract. Met. Hard Mater., 2009, 27, p 288–299

    Article  Google Scholar 

  11. M.S. El-Eskandarany, A.A. El-Mahdy, H.A. Ahmed, and A.A. Amer, Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC-Co powders and subsequent consolidations, J. Alloys Compd., 2000, 312, p 315–325

    Article  Google Scholar 

  12. R.K. Enneti, Synthesis of nanocrystalline tungsten and tungsten carbide powders in a single step via thermal plasma technique, Int. J. Refract. Met. Hard Mater., 2015, 53, p 111–116

    Article  Google Scholar 

  13. Y. Xun and F.A. Mohamed, Refining efficiency and capability of top-down synthesis of nanocrystalline materials, Mater. Sci. Eng. A, 2011, 527, p 5446–5452

    Article  Google Scholar 

  14. Y. Kanemitsu, T. Nishimura, H. Yoshino, K. Takao, and Y. Masumoto, Effect of hot isostatic pressing on binderless cemented carbide, Refract. Met. Hard Mater., 1982, 1, p 66–68

    Google Scholar 

  15. G. Maizza, S. Grasso, Y. Sakka, T. Noda, and O. Ohashi, Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder, Sci. Technol. Adv. Mater., 2007, 8, p 644–654

    Article  Google Scholar 

  16. M. Tokita, Spark Plasma Sintering (SPS) Method, Systems, and Applications, Handbook of Advanced Ceramics, 1st ed., Elsevier Inc., Oxford, 2015

    Google Scholar 

  17. M.S. El-Eskandarany, Fabrication and characterizations of new nanocomposite WC/Al2O3 materials by room temperature ball milling and subsequent consolidation, J. Alloys Compd., 2005, 391, p 228–235

    Article  Google Scholar 

  18. H.J. Fecht, Nanostructure formation by mechanical attrition, Nanostruct. Mater., 1995, 6, p 33–42

    Article  Google Scholar 

  19. M. Tokita, Spark Plasma Sintering (SPS) Method, Systems, and Applications, Handbook of Advanced Ceramics, Elsevier Inc., Oxford, 2013

    Google Scholar 

  20. B.R. Lawn, A.G. Evans, and D.B. Marshall, Elastic/plastic indentation damage in ceramics: the median/radial crack system, J. Am. Ceram. Soc., 1980, 63, p 574–581

    Article  Google Scholar 

  21. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, Techniques for measuring reacture toughness I, direct crack measurements, J. Am. Ceram. Soc., 1981, 64, p 533–538

    Article  Google Scholar 

  22. H. Gleiter, Nanostructured materials: basic concepts and microstructured, Acta Mater., 2000, 48, p 1–29

    Article  Google Scholar 

  23. Y. Zhou, U. Erb, K.T. Aust, and G. Palumbo, The effects of triple junctions and grain boundaries on hardness and Young modulus in nanostructured Ni–P, Scr. Mater., 2003, 48, p 825–830

    Article  Google Scholar 

  24. F. Wang, X.-Q. Feng, S.-W. Yu, and C.-W. Nan, Interface effects on effective elastic moduli of nanocrystalline materials, Mater. Sci. Eng. A, 2003, 363, p 1–8

    Article  Google Scholar 

  25. X. Qing and G. Xingming, The scale effect on the yield strength of nanocrystalline materials, Int. J. Solids Struct., 2006, 43, p 7793–7799

    Article  Google Scholar 

Download references

Acknowledgments

The financial support received by the Nanotechnology and Advanced Materials Program-Energy and Building Research Center, Kuwait Institute for scientific Research is highly appreciated. We would like to express our deepest gratitude to the Kuwait Government for purchasing the equipment used in the present work, using the budget dedicated for the project led by the first author (P-KISR-06-04) of Establishing Nanotechnology Center in KISR is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sherif El-Eskandarany.

Ethics declarations

Conflict of interest

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherif El-Eskandarany, M., Al-Hazza, A. & Al-Hajji, L.A. HRTEM and Nanoindentation Studies of Bulk WC Nanocrystalline Materials Prepared by Spark Plasma Sintering of Ball-Milled Powders. J. of Materi Eng and Perform 26, 124–133 (2017). https://doi.org/10.1007/s11665-016-2443-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2443-3

Keywords

Navigation