Skip to main content
Log in

Study of Monotonic Properties’ Relevance for Estimation of Cyclic Yield Stress and Ramberg-Osgood Parameters of Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Most of existing methods for estimation of cyclic stress-strain parameters have been developed for steels in general with no regard to the peculiarities of individual steel subgroups. Also, proposed models were commonly developed and evaluated without systematically determining if, and to what extent, individual monotonic properties contribute to their accuracy. In this work, a thorough statistical analysis of experimental datasets of 116 different steels obtained from literature was performed in order to determine which monotonic properties might be relevant for the estimation of cyclic yield stress and cyclic Ramberg-Osgood parameters of unalloyed, low-alloy and high-alloy steels. Only certain monotonic properties used in existing methods were found to be suitable for estimation purposes, while for a number of monotonic properties used in those references no such conclusion can be given. Furthermore, obtained results indicate that steels should not be treated as a single group since different sets of monotonic properties proved to be relevant for unalloyed, low- and high-alloy steel subgroups. Provided list of specific monotonic properties relevant for estimation of individual cyclic parameters of particular steel subgroups can be used for improving the accuracy of existing or development of new estimation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

A 5 :

Elongation related to 5× diameter of specimen (%)

E :

Young’s modulus (MPa)

H 0 :

Hypothesis to be tested

H 1 :

Alternative hypothesis

HB :

Brinell hardness (HB)

K :

Strength coefficient (MPa)

K′:

Cyclic strength coefficient (MPa)

n :

Strain hardening exponent (-)

n′:

Cyclic strain hardening exponent (-)

r :

Coefficient of correlation (-)

R 2 :

Coefficient of determination (-)

R 2adj :

Adjusted coefficient of determination (-)

R 2seq :

Coefficient of partial determination (-)

RA :

Reduction of area at fracture (%)

R e :

Yield stress (MPa)

\( R_{\text{e}}^{{\prime }}\) :

Cyclic yield stress (MPa)

R m :

Ultimate strength (MPa)

R m/R e :

Ultimate strength to yield stress ratio (-)

R p0.2 :

0.2% offset yield stress (MPa)

α:

Significance level (-)

α:

New fracture ductility parameter (%)

Δε:

True total strain range (-)

Δεe :

True elastic strain range (-)

Δεp :

True plastic strain range (-)

Δσ:

True stress range (MPa)

εf :

True fracture strain (-)

σf :

True fracture stress (MPa)

ν:

Poisson’s ratio (-)

References

  1. W. Ramberg and W.R. Osgood, Description of Stress-Strain Curves by Three Parameters. Technical note no. 902, National Advisory Committee for Aeronautics (NACA), 1943

  2. S.S. Manson and G.R. Halford, Fatigue and durability of structural materials, ASM International, 2005

  3. R.W. Smith, M.H. Hirschberg and S.S. Manson, Fatigue behavior of materials under strain cycling in low and intermediate life range. Technical note D-1574, NASA, 1963

  4. R.W. Landgraf, J. Morrow, and T. Endo, Determination of Cyclic Stress-Strain Curve, J. Mater. (JMSLA), 1969, 4(1), p 176–188

    Google Scholar 

  5. Z. Zhang, W. Wu, D. Chen, Q. Sun, and W. Zhao, New Formula Relating the Yield Stress-Strain with the Strength Coefficient and the Strain-Hardening Exponent, J. Mater. Eng. Perform., 2004, 13, p 509–512. doi:10.1361/10599490420070

    Article  Google Scholar 

  6. Z. Zhang, J. Li, Q. Sun, Y. Qiao, and C. Li, Two Parameters Describing Cyclic Hardening/Softening Behaviors of Metallic Materials, J. Mater. Eng. Perform., 2009, 18, p 237–244. doi:10.1007/s11665-008-9287-4

    Article  Google Scholar 

  7. Z. Zhang, Y. Qiao, Q. Sun, C. Li, and J. Li, Theoretical Estimation to the Cyclic Strength Coefficient and the Cyclic Strain-Hardening Exponent for Metallic Materials: Preliminary Study, J. Mater. Eng. Perform., 2009, 18, p 245–254. doi:10.1007/s11665-008-9286-5

    Article  Google Scholar 

  8. J. Li, Q. Sun, Z. Zhang, C. Li, and Y. Qiao, Theoretical Estimation to the Cyclic Yield Strength and Fatigue Limit for Alloy Steels, Mech. Res. Commun., 2009, 36, p 316–321. doi:10.1016/j.mechrescom.2008.10.011

    Article  Google Scholar 

  9. R. Basan, M. Franulović, and S. Smokvina-Hanza, Estimation of Cyclic Stress-Strain Curves for Low-Alloy Steel from Hardness, Metallurgy, 2010, 49, p 83–86

    Google Scholar 

  10. Z. Lopez and A. Fatemi, A Method of Predicting Cyclic Stress-Strain Curve from Tensile Properties for Steels, Mater. Sci. Eng. A, 2012, 556, p 540–550. doi:10.1016/j.msea.2012.07.024

    Article  Google Scholar 

  11. R. Basan, T. Marohnić, I. Prebil and M. Franulović, Preliminary investigation of the existence of correlation between cyclic Ramberg-Osgood parameters and monotonic properties of low-alloy steels. Proceedings of the 3rd International conference MTSM 2013, Sept 26-27, 2013 (Split, Croatia), Croatian society for mechanical technologies, 2013

  12. T. Marohnić, R. Basan, and M. Franulović, Evaluation of the Possibility of Estimating Cyclic Stress-Strain Parameters and Curves from Monotonic Properties of Steels, Procedia Eng., 2015, 101, p 277–284. doi:10.1016/j.proeng.2015.02.029

    Article  Google Scholar 

  13. A. Nieslony, C. el Dsoki, H. Kaufmann, and P. Krug, New Method for Evaluation of the Manson-Coffin-Basquin and Ramberg-Osgood Equations with Respect to Compatibility, Int. J. Fatigue, 2008, 30, p 1967–1977. doi:10.1016/j.ijfatigue.2008.01.012

    Article  Google Scholar 

  14. M.L. Roessle and A. Fatemi, Strain-Controlled Fatigue Properties of Steels and Some Simple Approximations, Int. J. Fatigue, 2000, 22, p 495–511. doi:10.1016/S0142-1123(00)00026-8

    Article  Google Scholar 

  15. Technical Report on Low Cycle Fatigue Properties Ferrous and Non-Ferrous of Materials, J1099_197502, SAE, 1975

  16. AISI Bar Steel Fatigue Database. http://barsteelfatigue.autosteel.org/

  17. Technical Report on Low Cycle Fatigue Properties Ferrous and Non-Ferrous of Materials, J1099_200208, SAE, 2002

  18. D.C. Montgomery and G.C. Runger, Applied Statistics and Probability for Engineers, Wiley, Hoboken, 2003

    Google Scholar 

  19. R. Basan, M. Franulović, I. Prebil, and N. Črnjarić-Žic, Analysis of Strain-Life Fatigue Parameters and Behaviour of Different Groups Of Metallic Materials, Int. J. Fatigue, 2011, 33, p 484–491. doi:10.1016/j.ijfatigue.2010.10.005

    Article  Google Scholar 

  20. A. Bäumel and T. Seeger, Materials Data for Cyclic Loading—Supplement 1, Elsevier, Amsterdam, 1990

    Google Scholar 

  21. C. Boller and T. Seeger, Materials data for cyclic loading, part A-D, Elsevier, 1987

  22. R. Basan, MATDAT Materials Properties Database, Version 1.0. http://www.matdat.com/. 2011. Accessed: 15 January 2016

Download references

Acknowledgments

This work has been supported in part by the University of Rijeka [Project Number 13.09.1.2.09] and Croatian Science Foundation [Scientific Project Number IP-2014-09-4982].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tea Marohnić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marohnić, T., Basan, R. Study of Monotonic Properties’ Relevance for Estimation of Cyclic Yield Stress and Ramberg-Osgood Parameters of Steels. J. of Materi Eng and Perform 25, 4812–4823 (2016). https://doi.org/10.1007/s11665-016-2311-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2311-1

Keywords

Navigation