Skip to main content

Advertisement

Log in

High Temperature Mechanical Behavior of Ti-45Al-8Nb and Its Cavity Evolution in Deformation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The tensile property of a high Nb containing TiAl-based alloy (Ti-45Al-8Nb) was investigated in the temperature range of 900-1050 °C and strain rate range of 1 × 10−3 to 2.5 × 10−2 s−1. The results revealed that the yield stress decreased with increasing temperature and decreasing strain rate, while the tensile elongation increased with an increase in temperature and a decrease in strain rate. Hence, The minimum yield stress of 119.2 MPa and the maximum elongation of 237% were obtained at the temperature of 1050 °C and strain rate of 1 × 10−3 s−1. Based on the experimental data, the activation energy of the alloy was calculated to be 360 kJ/mol. Moreover, the microstructure and the fracture morphology of the specimens were observed, and the results revealed that the distribution of cavities was related to deformation parameters and the fracture mode was typically dimple-type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Zhang, L. He, Y. Cui, and H. Ye, Microstructural Characteristics of Ti-48Al-2Cr Alloy, J. Mater. Eng. Perform., 2001, 10(3), p 378–389

    Article  Google Scholar 

  2. X.F. Ding, J.P. Lin, L.Q. Zhang, Y.Q. Su, and G.L. Chen, Microstructural Control of TiAl–Nb Alloys by Directional Solidification, Acta Mater., 2012, 60, p 498–506

    Article  Google Scholar 

  3. X. Zan, Y.H. He, Y. Wang, Z.X. Lu, and Y.M. Xia, Tensile Impact Behavior and Deformation Mechanism of Duplex TiAl Intermetallics at Elevated Temperatures, J. Mater. Sci., 2010, 45, p 6446–6454

    Article  Google Scholar 

  4. Y.W. Kim, Microstructural Evolution and Mechanical Properties of a Forged Gamma Titanium Aluminide Alloy, Acta Metall., 1992, 40(6), p 1121–1134

    Article  Google Scholar 

  5. S. Simoes, F. Viana, M. Kocak, A.S. Ramos, M.T. Vieira, and F. Manuel, Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer Vieira, J. Mater. Eng. Perform., 2012, 21, p 678–682

    Article  Google Scholar 

  6. X.J. Xu, L.H. Xu, J.P. Lin, Y.L. Wang, Z. Lin, and G.L. Chen, Pilot Processing and Microstructure Control of High Nb Containg TiAl Alloy, Intermetallics, 2005, 13, p 337–341

    Article  Google Scholar 

  7. W.J. Zhang, G.L. Chen, F. Appel, T.G. Nieh, and S.C. Deevis, A Preliminary Study on the Creep Behavior of Ti-45Al-10Nb Alloy, Mater. Sci. Eng. A, 2001, 315, p 250–253

    Article  Google Scholar 

  8. H. Clemens and H. Kestler, Processing and Applications of Intermetallic γ-TiAl Based Alloys, Adv. Eng. Mater., 2001, 2, p 551–570

    Article  Google Scholar 

  9. W.J. Zhang, S.C. Deevi, and G.L. Chen, On the Origin of Superior High Strength of Ti–45Al–10Nb Alloys, Intermetallics, 2002, 10, p 403–406

    Article  Google Scholar 

  10. Z.C. Liu, J.P. Lin, S.J. Li, and G.L. Chen, Effects of Nb and Al on the Microstructures and Mechanical Properties of High Nb Containing TiAl Base Alloys, Intermetallics, 2002, 10, p 653–659

    Article  Google Scholar 

  11. M. Zhou, Y.C. Lin, J. Deng, and Y.Q. Jiang, Hot Tensile Deformation Behaviors and Constitutive Model of an Al-Zn-Mg-Cu Alloy, Mater. Des., 2014, 59, p 141–150

    Article  Google Scholar 

  12. J.B. Li, Y. Liu, B. Liu, Y. Wang, P. Cao, C.X. Zhou, C. Xiang, and Y. He, High Temperature Deformation Behavior of Near γ-Phase High Nb-Containing TiAl Alloy, Intermetallics, 2014, 52, p 49–56

    Article  Google Scholar 

  13. S.S. Li, X.K. Su, Y.F. Han, X.J. Xu, and G.L. Chen, Simulation of Hot Deformation of TiAl Based Alloy Containing High Nb, Intermetallics, 2005, 13, p 323–328

    Article  Google Scholar 

  14. R. Gerling, A. Bartels, H. Chemens, H. Kestlerd, and F.P. Schimansky, Structural Characterization and Tensile Properties of a High Niobium Containing Gamma TiAl Sheet Obtained by Powder Metallurgical Processing, Intermetallics, 2004, 12, p 275–280

    Article  Google Scholar 

  15. S. Bystrzanowski, A. Bartels, and A. Stark, Evolution of Microstructure and Texture in Ti–46Al–9Nb Sheet Material During Tensile Flow at Elevated Temperatures, Intermetallics, 2010, 18, p 1046–1055

    Article  Google Scholar 

  16. B. Liu, Y. Liu, W. Zhang, and J.S. Huang, Hot Deformation Behavior of TiAl Alloys Prepared by Blended Elemental Powders, Intermetallics, 2011, 19, p 154–159

    Article  Google Scholar 

  17. Y.Y. Chen, B.H. Li, and F.T. Kong, Effects of Minor Yttrium Addition on Hot Deformability of Lamellar Ti-45Al-5Nb Alloy, Trans. Nonferr. Metals Soc. China, 2007, 17, p 58–63

    Article  Google Scholar 

  18. H.Z. Niu, Y.Y. Chen, F.T. Kong, and J.P. Lin, Microstructure Evolution Hot Deformation Behavior and Mechanical Properties of Ti-43Al-6Nb-1B Alloy, Intermetallics, 2012, 31, p 249–256

    Article  Google Scholar 

  19. P. Lin, Z.B. He, S.J. Yuan, and J. Shen, Tensile Deformation Behavior of Ti–22Al–25Nb Alloy at Elevated Temperatures, Mater. Sci. Eng. A, 2012, 556, p 617–624

    Article  Google Scholar 

  20. J. Deng, Y.C. Lin, S.S. Li, J. Chen, and Y. Ding, Hot Tensile Deformation and Fracture Behaviors of AZ31 Magnesium Alloy, Mater. Des., 2013, 49, p 209–219

    Article  Google Scholar 

  21. Y.C. Lin, J. Deng, Y.Q. Jiang, D.X. Wen, and G. Liu, Effects of Initial δ Phase on Hot Tensile Deformation Behaviors and Fracture Characteristics of a Typical Ni-Based Superalloy, Mater. Sci. Eng. A, 2014, 598, p 251–262

    Article  Google Scholar 

  22. Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759

    Article  Google Scholar 

  23. L. Cheng, X.Y. Xue, B. Tang, H.C. Kou, and J.S. Li, Flow Characteristics and Constitutive Modeling for Elevated Temperature Deformation of a High Nb Containing TiAl Alloy, Intermetallics, 2014, 49, p 23–28

    Article  Google Scholar 

  24. D.H. Bae and A.K. Ghosh, Cavity Growth During Superplastic Flow in an Al–Mg Alloy: I, Experimental study, Acta Mater., 2002, 50, p 1011–1029

    Article  Google Scholar 

  25. H. Clemens, H.F. Chladil, W. Wallgram, G.A. Zickler, R. Gerling, K.D. Liss, S. Kremmer, V. Gvther, and W. Smarsly, In and Ex Situ Investigations of the β-Phase in a Nb and Mo Containing γ-TiAl Based Alloy, Intermetallics, 2008, 16, p 827–833

    Article  Google Scholar 

  26. T. Schmoelzer, S. Mayer, C. Sailer, F. Haupt, V. Guther, P. Staron, K.D. Liss, and H. Clemens, Phase Fractions, Transition and Ordering Temperatures in Ti-Al-Nb-Mo Alloys: An In- and Ex Situ Study, Adv. Eng. Mater., 2011, 13, p 306–311

    Article  Google Scholar 

  27. C.P. Zhang and K.F. Zhang, Superplasticity of a γ-TiAl Alloy and Its Microstructure and Cavity Evolution in Deformation, J. Alloy. Compd., 2010, 492, p 236–240

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Science and Technology Major Project of China. The Project No. is 2014ZX04001-141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihao Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Zhang, K., Jiang, S. et al. High Temperature Mechanical Behavior of Ti-45Al-8Nb and Its Cavity Evolution in Deformation. J. of Materi Eng and Perform 24, 3746–3754 (2015). https://doi.org/10.1007/s11665-015-1676-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1676-x

Keywords

Navigation