Skip to main content
Log in

The Mechanical Properties and Corrosion Behavior of Quaternary Mg-6Zn-0.8Mn-xCa Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In present study, the influence of calcium content on the microstructure, mechanical properties and corrosion behavior of quaternary Mg-6Zn-0.8Mn-xCa alloys, where x = 1, 1.5, 3 or 4.5 wt.% Ca, was examined. The grain structure of this quaternary alloy system became more refined with increasing additions of Ca. In addition to α-Mg, the Ca2Mg6Zn3 phase was found to be present in Mg-6Zn-0.8Mn-1Ca and Mg-6Zn-0.8Mn-1.5Ca according to microstructural and thermal analysis (TA). In addition to the α-Mg and Ca2Mg6Zn3 phases, the Mg2Ca phase was found to be present in the Mg-6Zn-0.8Mn-3Ca and Mg-6Zn-0.8Mn-4.5Ca alloys. Alloys with 1 or 1.5 wt.% Ca led to increases in the tensile strength of Mg-6Zn-0.8Mn, although further Ca additions had a deleterious effect. The TA of Mg-6Zn-0.8Mn-xCa during its solidification indicates that the fraction of liquid phase increases with increasing Ca content at the dendrite coherency point, leading to an increase in secondary phases and increased corrosion rate of Mg-6Zn-0.8Mn-xCa alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N.T. Kirkland, N. Birbilis, and M.P. Staiger, Assessing the Corrosion of Biodegradable Magnesium Implants: A Critical Review of Current Methodologies and Their Limitations, Acta Biomater., 2012, 8, p 925–936

    Article  Google Scholar 

  2. N.G. Wang, R.C. Wang, C.Q. Peng, and Y. Feng, Corrosion Behavior of Magnesium Alloy AP65 in 3.5% Sodium Chloride Solution, J. Mater. Eng. Perform., 2012, 21, p 1300–1308

    Article  Google Scholar 

  3. Y.F. Zheng, X.N. Gu, and F. Witte, Biodegradable Metals, Mater. Sci. Eng. R-Rep., 2014, 77, p 1–34

    Article  Google Scholar 

  4. J.D. Currey, Mechanical Properties of Vertebrate Hard Tissues, Proc. Inst. Mech. Eng. Part H: J. Eng. Med., 1998, 212, p 399–411

    Article  Google Scholar 

  5. G.L. Song, Control of Biodegradation of Biocompatible Magnesium Alloys, Corros. Sci., 2007, 49, p 1696–1701

    Article  Google Scholar 

  6. M.C. Lopes de Oliveira, V.S. Marques Pereira, O.V. Correa, and R.A. Antunes, Corrosion Performance of Anodized AZ91D Magnesium Alloy: Effect of the Anodizing Potential on the Film Structure and Corrosion Behavior, J. Mater. Eng. Perform., 2014, 23, p 593–603

    Article  Google Scholar 

  7. E. Ghali, W. Dietzel, and K.U. Kainer, General and Localized Corrosion of Magnesium Alloys: A Critical Review, J. Mater. Eng. Perform., 2004, 13, p 7–23

    Article  Google Scholar 

  8. J. Kuhlmann, I. Bartsch, E. Willbold, S. Schuchardt, O. Holz, N. Hort, D. Höche, W.R. Heineman, and F. Witte, Fast Escape of Hydrogen From Gas Cavities Around Corroding Magnesium Implants, Acta Biomater., 2013, 9, p 8714–8721

    Article  Google Scholar 

  9. N.T. Kirkland, J. Lespagnol, N. Birbilis, and M.P. Staiger, A Survey of Bio-corrosion Rates of Magnesium Alloys, Corros. Sci., 2010, 52, p 287–291

    Article  Google Scholar 

  10. X. Gu, Y. Zheng, and Y. Cheng, In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys, Biomaterials, 2009, 30, p 484–498

    Article  Google Scholar 

  11. F. Witte, V. Kaese, and H. Haferkamp, In Vivo Corrosion of Four Magnesium Alloys and the Associated Bone Response, Biomaterials, 2005, 26, p 3557–3563

    Article  Google Scholar 

  12. L.P. Xu, G.N. Yu, E.L. Zhang, F. Pan, and K. Yang, In Vivo Corrosion Behavior of Mg-Mn-Zn Alloy for Bone Implant Application, J. Biomed. Mater. Res. A, 2007, 83, p 703–711

    Article  Google Scholar 

  13. F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen, In Vitro and In Vivo Corrosion Measurements of Magnesium Alloys, Biomaterials, 2006, 27, p 1013–1018

    Article  Google Scholar 

  14. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27, p 1728–1734

    Article  Google Scholar 

  15. F. Cao, Z. Shi, G.L. Song, M. Liu, and A. Atrens, Corrosion Behaviour in Salt Spray and in 3.5% NaCl Solution Saturated with Mg(OH)2 of As-cast and Solution Heat-Treated Binary Mg-X Alloys: X=Mn, Sn, Ca, Zn, Al, Zr, Si, Sr, Corros. Sci., 2013, 76, p 60–97

    Article  Google Scholar 

  16. F. Witte and N. Hort, Degradable Biomaterials Based on Magnesium Corrosion, Curr. Opin. Solid State M, 2008, 12, p 63–72

    Article  Google Scholar 

  17. H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, and S. Farahany, Microstructure Analysis and Corrosion Behavior of Biodegradable Mg-Ca Implant Alloys, Mater. Des., 2012, 33, p 88–97

    Article  Google Scholar 

  18. N.T. Kirkland, N. Birbilis, and J. Walker, In-Vitro Dissolution of Magnesium-Calcium Binary Alloys: Clarifying the Unique Role of Calcium Additions in Bioresorbable Magnesium Implant Alloys, J. Biomed. Mater. Res. B, 2010, 95, p 91–100

    Article  Google Scholar 

  19. Z. Li, X. Gu, S. Lou, and Y. Zheng, The Development of Binary Mg-Ca Alloys for Use as Biodegradable Materials Within Bone, Biomaterials, 2008, 29, p 1329–1344

    Article  Google Scholar 

  20. N. Li and Y. Zheng, Novel Magnesium Alloys Developed for Biomedical Application: A Review, J. Mater. Sci. Technol., 2013, 29, p 489–502

    Article  Google Scholar 

  21. S. Zhang, X. Zhang, and C. Zhao, Research on an Mg-Zn Alloy as a Degradable Biomaterial, Acta Biomater., 2010, 6, p 626–640

    Article  Google Scholar 

  22. E. Zhang, D. Yin, L. Xu, Y. Lei, and K. Yang, Microstructure, Mechanical and Corrosion Properties and Biocompatibility of Mg-Zn-Mn Alloys for Biomedical Application, Mater. Sci. Eng., C, 2009, 29, p 987–993

    Article  Google Scholar 

  23. L.B. Tonga, M.Y. Zheng, and S.W. Xu, Effect of Mn Addition on Microstructure Texture and Mechanical Properties of Mg-Zn-Ca Alloy, Mater. Sci. Eng., A, 2011, 528, p 3741–3747

    Article  Google Scholar 

  24. F. Rosalbino, E. Angelini, S. De Negri, S. Delfino, and A. Saccone, Bio-corrosion Characterization of Mg-Zn-X (X = Ca, Mn, Si) Alloys for Biomedical Applications, J. Mater. Sci. Mater. Med., 2010, 21, p 1091–1098

    Article  Google Scholar 

  25. Y. Dongsong, Z. Erlin, and Z. Songyan, Effect of Zn Content on Microstructure, Mechanical Properties and Fracture Behavior of Mg-Mn Alloy, China Foundry, 2009, 6, p 43–47

    Google Scholar 

  26. H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, and S. Farahany, Relationship Between the Corrosion Behavior and the Thermal Characteristics and Microstructure of Mg-0.5Ca-xZn Alloys, Corros. Sci., 2012, 64, p 184–197

    Article  Google Scholar 

  27. B. Zhang, Y. Hou, and X. Wang, Mechanical Properties, Degradation Performance and Cytotoxicity of Mg-Zn-Ca Biomedical Alloys with Different Compositions, Mater. Sci. Eng., C, 2011, 31, p 1667–1673

    Article  Google Scholar 

  28. D. Fang, X. Li, H. Li, and Q. Peng, Electrochemical Corrosion Behavior of Backward Extruded Mg-Zn-Ca Alloys in Different Media, Int. J. Electrochem. Sci., 2013, 8, p 2551–2565

    Google Scholar 

  29. H. Du, Z. Wei, X. Liu, and E. Zhang, Effects of Zn on the Microstructure, Mechanical Property and Bio-corrosion Property of Mg-3Ca Alloys for Biomedical Application, Mater. Chem. Phys., 2011, 125, p 568–575

    Article  Google Scholar 

  30. E. Zhanga and L. Yang, Microstructure, Mechanical Properties and Bio-corrosion Properties of Mg-Zn-Mn-Ca Alloy for Biomedical Application, Mater. Sci. Eng., A, 2008, 497, p 111–118

    Article  Google Scholar 

  31. H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, A. Ourdjini, M. Medraj, M. Daroonparvar, and E. Hamzah, Mechanical and Bio-corrosion Properties of Quaternary Mg-Ca-Mn-Zn Alloys Compared with Binary Mg-Ca Alloys, Mater. Des., 2014, 53, p 283–292

    Article  Google Scholar 

  32. L. Backerud, G. Chai, and J. Tamminen, Solidification Characteristics of Aluminum Alloys, AFS, Des Plaines, IL, 1990

    Google Scholar 

  33. T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27, p 2907–2915

    Article  Google Scholar 

  34. Z. Shi, M. Liu, and A. Atrens, Measurement of the Corrosion Rate of Magnesium Alloys Using Tafel Extrapolation, Corros. Sci., 2010, 52, p 579–588

    Article  Google Scholar 

  35. ASTM G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of 369 Metals, 2004

  36. E. Zhang, D. Yin, L. Xu, Y. Lei, and K. Yang, Microstructure, Mechanical and Corrosion Properties and Biocompatibility of Mg-Zn-Mn Alloys for Biomedical Application, Mater. Sci. Eng., C, 2009, 29, p 987–993

    Article  Google Scholar 

  37. X. Zhang, Z. Wang, G. Yuan, and Y. Xue, Improvement of Mechanical Properties and Corrosion Resistance of Biodegradable Mg-Nd-Zn-Zr Alloys by Double Extrusion, Mater. Sci. Eng., B, 2012, 177, p 1113–1119

    Article  Google Scholar 

  38. S. Cai, T. Lei, and N. Li, Effects of Zn on Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn Alloys, Mater. Sci. Eng., C, 2012, 32, p 2570–2577

    Article  Google Scholar 

  39. W.C. Kim, J.G. Kim, J.Y. Lee, and H.K. Seok, Influence of Ca on the Corrosion Properties of Magnesium for Biomaterials, Mater. Lett., 2008, 62, p 4146–4148

    Article  Google Scholar 

  40. Y. Song, E. Han, D. Shan et al., The Role of Second Phases in the Corrosion Behavior of Mg-5Zn Alloy, Corros. Sci., 2012, 60, p 238–245

    Article  Google Scholar 

  41. F. Rosalbino, S. De Negri, G. Scavino, and A. Saccone, Microstructure and In Vitro Degradation Performance of Mg-Zn-Mn Alloys for Biomedical Application, J. Biomed. Mater. Res. A, 2013, 101, p 704–711

    Article  Google Scholar 

  42. X. Wang, L.H. Dong, X.L. Ma, and Y.F. Zheng, Microstructure, Mechanical Property and Corrosion Behaviors of Interpenetrating C/Mg-Zn-Mn Composite Fabricated by Suction Casting, Mater. Sci. Eng., C, 2013, 33, p 618–625

    Article  Google Scholar 

  43. D. Sachdeva, Insights into Microstructure Based Corrosion Mechanism of High Pressure Die Cast AM50 Alloy, Corros. Sci., 2012, 60, p 18–31

    Article  Google Scholar 

  44. Q. Liu, W. Cheng, H. Zhang, C. Xu, and J. Zhang, The role of Ca on the Microstructure and Corrosion Behavior of Mg-8Sn-1Al-1Zn-Ca Alloys, J. Alloy. Compd., 2014, 590, p 162–167

    Article  Google Scholar 

  45. A. Feng and Y. Han, Mechanical and In Vitro Degradation Behavior of Ultrafine Calcium Polyphosphate Reinforced Magnesium-Alloy Composites, Mater. Des., 2011, 32, p 2813–2820

    Article  Google Scholar 

  46. J. Kubásek, D. Vojtěch, J. Lipov, and T. Ruml, Structure, Mechanical Properties, Corrosion Behavior and Cytotoxicity of Biodegradable Mg-X (X = Sn, Ga, In) Alloys, Mater. Sci. Eng., C, 2013, 33, p 2421–2432

    Article  Google Scholar 

  47. H.R. Bakhsheshi-Rad, E. Hamzah, M. Daroonparvar, R. Ebrahimi-Kahrizsangi, and M. Medraj, In-Vitro Corrosion Inhibition Mechanism of Fluorine-Doped Hydroxyapatite and Brushite Coated Mg-Ca Alloys for Biomedical Applications, Ceram. Int., 2014, 40, p 7971–7982

    Article  Google Scholar 

  48. P. Yin, N. Li, T. Lei, L. Liu, and C. Ouyang, Effects of Ca on Microstructure, Mechanical and Corrosion Properties and Biocompatibility of Mg-Zn-Ca Alloys, J. Mater. Sci. Mater. Med., 2013, 24, p 1365–1373

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Universiti Teknologi Malaysia (UTM) and Nippon Sheet Glass Foundation for providing research facilities and financial support under Grant No. R.J.130000.7324.4B136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Bakhsheshi-Rad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhsheshi-Rad, H.R., Hamzah, E., Farahany, S. et al. The Mechanical Properties and Corrosion Behavior of Quaternary Mg-6Zn-0.8Mn-xCa Alloys. J. of Materi Eng and Perform 24, 598–608 (2015). https://doi.org/10.1007/s11665-014-1271-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1271-6

Keywords

Navigation