Skip to main content

Advertisement

Log in

Exfoliation Corrosion Behavior of 2B06 Aluminum Alloy in a Tropical Marine Atmosphere

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, corrosion behavior of 2B06 aluminum alloy was investigated after exposure to a tropical marine atmosphere for up to 4 years. After 6 months, the specimen showed exfoliation corrosion as well as rapid increase in thickness loss and corrosion rate. Exfoliation corrosion was found to initiate from hydrogen-assisted intergranular cracks and propagate extensively due to the wedge effect of the corrosion products. During the exposure test, corrosion on the groundward surface was considerably more severe than that on the skyward surface, which could be attributed to the different exposure conditions on the two surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Nisancioglu, Corrosion of Aluminum Alloys, Norwegian Institute of Technology, SINTEF Metall. (Norway), 1992, 3, p 239–259

    Google Scholar 

  2. T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminum Alloys, Mater. Des., 2014, 56, p 862–871

    Article  Google Scholar 

  3. D. De la Fuente, E. Otero-Huerta, and M. Morcillo, Studies of Long-Term Weathering of Aluminum in the Atmosphere, Corros. Sci., 2007, 49, p 3134–3148

    Article  Google Scholar 

  4. B. Wang, Z. Wang, W. Han, and W. Ke, Atmospheric Corrosion of Aluminum Alloy 2024-T3 Exposed to Salt Lake Environment in Western China, Corros. Sci., 2012, 59, p 63–70

    Article  Google Scholar 

  5. S. Sun, Q. Zheng, D. Li, and J. Wen, Long-Term Atmospheric Corrosion Behaviour of Aluminum Alloys 2024 and 7075 in Urban, Coastal and Industrial Environments, Corros. Sci., 2009, 51, p 719–727

    Article  Google Scholar 

  6. R. Vera, D. Delgado, and B.M. Rosales, Effect of Atmospheric Pollutants on the Corrosion of High Power Electrical Conductors: Part 1. Aluminum and AA6201 Alloy, Corros. Sci., 2006, 48, p 2882–2900

    Article  Google Scholar 

  7. Z. Dan, I. Muto, and N. Hara, Effects of Environmental Factors on Atmospheric Corrosion of Aluminum and its Alloys Under Constant Dew Point Conditions, Corros. Sci., 2012, 57, p 22–29

    Article  Google Scholar 

  8. L. Tao, S. Song, X. Zhang, Z. Zhang, and F. Lu, Image Analysis of Atmospheric Corrosion of Field Exposure High Strength Aluminum Alloys, Appl. Surf. Sci., 2008, 254, p 6870–6874

    Article  Google Scholar 

  9. T.E. Graedel, Corrosion Mechanisms for Aluminum Exposed to the Atmosphere, J. Electrochem. Soc., 1989, 136, p 204C–212C

    Article  Google Scholar 

  10. L. Tao, S. Song, S. Wang, X. Zhang, M. Liu, and F. Lu, Image Analysis of Periodic Rain Accelerated Corrosion of Aeronautical Aluminum Alloys, Mater. Sci. Eng. A, 2008, 476, p 210–216

    Article  Google Scholar 

  11. T. Li, X. Li, C. Dong, and Y. Cheng, Characterization of Atmospheric Corrosion of 2A12 Aluminum Alloy in Tropical Marine Environment, J. Mater. Eng. Perform., 2010, 19, p 591–598

    Article  Google Scholar 

  12. D.O. Sprowls, Evaluation of Exfoliation Corrosion, ASM Handbook., 1987, 13, p 242–244

    Google Scholar 

  13. S. Sun, Q. Zheng, D. Li, S. Hu, and J. Wen, Exfoliation Corrosion of Extruded 2024-T4 in the Coastal Environments in China, Corros. Sci., 2011, 53, p 2527–2538

    Article  Google Scholar 

  14. S. Hu, S. Sun, A. Guo, X. Jia, Y. Geng, Atmospheric Corrosion Behavior of Extruded Aluminum Alloy 7075-T6 After Long-Term Field Testing in China, Corrosion, 2011, 67, p 106002-106002-106010

  15. M. Robinson, The Role of Wedging Stresses in the Exfoliation Corrosion of High Strength Aluminum Alloys, Corros. Sci., 1983, 23, p 887–899

    Article  Google Scholar 

  16. M. Keddam, C. Kuntz, H. Takenouti, D. Schustert, and D. Zuili, Exfoliation Corrosion of Aluminum Alloys Examined by Electrode Impedance, Electrochim. Acta, 1997, 42, p 87–97

    Article  Google Scholar 

  17. S. Chen, K. Chen, G. Peng, L. Jia, and P. Dong, Effect of Heat Treatment on Strength, Exfoliation Corrosion and Electrochemical Behavior of 7085 Aluminum Alloy, Mater. Des., 2012, 35, p 93–98

    Article  Google Scholar 

  18. L. Huang, K. Chen, S. Li, and M. Song, Influence of High-Temperature Pre-precipitation on Local Corrosion Behaviors of Al-Zn-Mg Alloy, Scripta Mater., 2007, 56, p 305–308

    Article  Google Scholar 

  19. H. Kamoutsi, G. Haidemenopoulos, V. Bontozoglou, and S. Pantelakis, Corrosion-Induced Hydrogen Embrittlement in Aluminum Alloy 2024, Corros. Sci., 2006, 48, p 1209–1224

    Article  Google Scholar 

  20. B. Li, Q. Pan, Z. Zhang, and C. Li, Research on Intercrystalline Corrosion, Exfoliation Corrosion, and Stress Corrosion Cracking of Al-Zn-Mg-Sc-Zr Alloy, Mater. Corros., 2013, 64, p 592–598

    Article  Google Scholar 

  21. T. Marlaud, B. Malki, A. Deschamps, and B. Baroux, Electrochemical Aspects of Exfoliation Corrosion of Aluminum Alloys: The Effects of Heat Treatment, Corros. Sci., 2011, 53, p 1394–1400

    Article  Google Scholar 

  22. T. Marlaud, B. Malki, C. Henon, A. Deschamps, and B. Baroux, Relationship Between Alloy Composition, Microstructure and Exfoliation Corrosion in Al-Zn-Mg-Cu Alloys, Corros. Sci., 2011, 53, p 3139–3149

    Article  Google Scholar 

  23. ISO9223, Corrosion of Metals and Alloys—Corrosivity Atmospheres-Classification, 1992

  24. E. Schindelholz, R. Kelly, I. Cole, W. Ganther, and T. Muster, Comparability and Accuracy of Time of Wetness Sensing Methods Relevant for Atmospheric Corrosion, Corros. Sci., 2013, 67, p 233–241

    Article  Google Scholar 

  25. I.S. Cole, W. Ganther, J. Sinclair, D. Lau, and D.A. Paterson, A Study of the Wetting of Metal Surfaces in Order to Understand the Processes Controlling Atmospheric Corrosion, J. Electrochem. Soc., 2004, 151, p B627–B635

    Article  Google Scholar 

  26. I.S. Cole and W. Ganther, Experimental Determination of Duration of Wetness on Metal Surfaces, Corros. Eng. Sci. Technol., 2008, 43, p 156–162

    Article  Google Scholar 

  27. F. Corvo, T. Perez, Y. Martin, J. Reyes, L. Dzib, J. González-Sánchez, and A. Castañeda, Time of Wetness in Tropical Climate: Considerations on the Estimation of TOW According to ISO 9223 Standard, Corros. Sci., 2008, 50, p 206–219

    Article  Google Scholar 

  28. ISO9225, Corrosion of Metals and Alloys-Corrosivity of Atmospheres-Measurement of Pollution, 1992

  29. Y. Ma, Y. Li, and F. Wang, The Effect of β-FeOOH on the Corrosion Behavior of Low Carbon Steel Exposed in Tropic Marine Environment, Mater. Chem. Phys., 2008, 112, p 844–852

    Article  Google Scholar 

  30. D. Kelly and M. Robinson, Influence of Heat Treatment and Grain Shape on Exfoliation Corrosion of Al-Li Alloy 8090, Corrosion, 1993, 49, p 787–795

    Article  Google Scholar 

  31. P. Petroyiannis, E. Kamoutsi, A. Kermanidis, S.G. Pantelakis, V. Bontozoglou, and G. Haidemenopoulos, Evidence on the Corrosion-Induced Hydrogen Embrittlement of the 2024 Aluminum Alloy, Fatigue Fract. Eng. Mater. Struct., 2005, 28, p 565–574

    Article  Google Scholar 

  32. T. Zhang, W.Y. Chu, K.W. Gao, and L.J. Qiao, Study of Correlation Between Hydrogen-Induced Stress and Hydrogen Embrittlement, Mater. Sci. Eng. A, 2003, 347, p 291–299

    Article  Google Scholar 

  33. N. Alexopoulos and P. Papanikos, Experimental and Theoretical Studies of Corrosion-Induced Mechanical Properties Degradation of Aircraft 2024 Aluminum Alloy, Mater. Sci. Eng. A, 2008, 498, p 248–257

    Article  Google Scholar 

  34. H. Kamoutsi, G. Haidemenopoulos, V. Bontozoglou, P. Petroyiannis, and S.G. Pantelakis, Effect of Prior Deformation and Heat Treatment on the Corrosion-Induced Hydrogen Trapping in Aluminum Alloy 2024, Corros. Sci., 2014, 80, p 139–142

    Article  Google Scholar 

  35. C. Larignon, J. Alexis, E. Andrieu, G. Odemer, and C. Blanc, The Contribution of Hydrogen to the Corrosion of 2024 Aluminum Alloy Exposed to Thermal and Environmental Cycling in Chloride Media, Corros. Sci., 2013, 69, p 211–220

    Article  Google Scholar 

  36. D. De La Fuente, I. Díaz, J. Simancas, B. Chico, and M. Morcillo, Long-Term Atmospheric Corrosion of Mild Steel, Corros. Sci., 2011, 53, p 604–617

    Article  Google Scholar 

  37. F.N. Longo, G.J. Durmann, Atmospheric Factors Affecting the Corrosion of Engineering Metals, ASTM STP646, PA, USA, (1978) p 97–114

  38. Z. Cui, X. Li, K. Xiao, C. Dong, Z. Liu, and L. Wang, Pitting Corrosion Behaviour of AZ31 Magnesium in Tropical Marine Atmosphere, Corros. Eng. Sci. Technol., 2014, 49, p 363–371

    Article  Google Scholar 

  39. T.T.N. Lan, N.T.P. Thoa, R. Nishimura, Y. Tsujino, M. Yokoi, and Y. Maeda, Atmospheric Corrosion of Carbon Steel Under Field Exposure in the Southern Part of Vietnam, Corros. Sci., 2006, 48, p 179–192

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the financial support from National Basic Research Program of China (973 Program project, No. 2014CB643300) and the National Science and Technology Basic Project from the Ministry of Science and Technology of China (No. 2012FY113000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. G. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z.Y., Li, X.G., Xiao, K. et al. Exfoliation Corrosion Behavior of 2B06 Aluminum Alloy in a Tropical Marine Atmosphere. J. of Materi Eng and Perform 24, 296–306 (2015). https://doi.org/10.1007/s11665-014-1258-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1258-3

Keywords

Navigation