Skip to main content
Log in

Electrodeposition, Morphology, Composition, and Corrosion Performance of Zn-Mn Coatings from a Deep Eutectic Solvent

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Different Zn-Mn coatings were successfully electrodeposited on copper substrates from deep eutectic solvent-based electrolytes containing boric acid as an additive. The main objective of this work was to optimize the Zn/Mn ratios and morphologies of the as-electrodeposited Zn-Mn films in order to obtain better corrosion protection performance coatings. The electrodeposition behaviors of Zn-Mn alloys as studied by cyclic voltammetry showed that with increase in electrolyte Mn(II) concentration, Zn(II) ion reduction occurs at higher overpotentials while Mn reduction occurs at lower overpotentials, and this in turn enhances Mn incorporation into the deposit. Characterization results showed that the electrodeposition potential and electrolyte Mn(II) concentration significantly affects the Mn content, crystal structure, surface morphology, and corrosion performance of the deposits. With increase in electrodeposition potential and electrolyte Mn(II) concentration, the alloy Mn increased and the grain morphology was refined. The crystal structure of Zn-Mn deposits consists of Zn and hexagonal close packed ε-phase Zn-Mn at low electrodeposition potentials and low electrolyte Mn(II) content. However, at high electrodeposition potentials and electrolyte Mn(II) contents, the crystal structure was only composed of hexagonal close packed ε-phase Zn-Mn. Corrosion measurements show that all the Zn-Mn samples have a passivating behavior and exhibits higher corrosion resistances when compared to those from aqueous solutions. Thus, optimum electrodeposition potential and electrolyte Mn(II) concentration were determined producing compact Zn-Mn films with the best corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.D. Wilcox and D.R. Gabe, Electrodeposited Zinc Alloy Coatings, Corros. Sci., 1993, 35, p 1251–1258

    Article  Google Scholar 

  2. D.R. Gabe, G.D. Wilcox, A. Jamani, B.R. Pearson, Zinc-Manganese Alloy Electrodeposition, Met. Finish., 1993, 91, p 34–36

  3. G.D. Wilcox and B. Petersen, Zinc-Manganese Alloy Electrodeposition, Trans. Inst. Met. Finish., 1996, 74, p 115–118

    Google Scholar 

  4. K.N. Srinivasan, M. Selvan, and K.I.S. Venkata, Hydrogen Permeation During Zinc-Manganese Alloy Plating, J. Appl. Electrochem., 1993, 23, p 358–363

    Article  Google Scholar 

  5. M. Sagiyama, T. Urakawa, T. Adaniya, T. Hara, and Y. Fukuda, Zinc-Manganese Alloy Electroplating on Steel Strip, Plat. Surf. Finish., 1987, 74, p 40

    Google Scholar 

  6. N. Boshkov, K. Petrov, S. Vitkova, and G. Raichevsky, Galvanic Alloys Zn-Mn—Composition of the Corrosion Products and their Protective Ability in Sulfate Containing Medium, Surf. Coat. Technol., 2005, 194, p 276–282

    Article  Google Scholar 

  7. N. Boshkov, K. Petrov, D. Kovacheva, S. Vitkova, and S. Nemska, Influence of the Alloying Component on the Protective Ability of Some Zinc Galvanic Coatings, Electrochim Acta, 2005, 51, p 77–84

    Article  Google Scholar 

  8. N. Boshkov, Galvanic Zn-Mn Alloys-Electrodeposition, Phase Composition, Corrosion Behavior and Protective Ability, Surf. Coat. Technol., 2003, 172, p 217–226

    Article  Google Scholar 

  9. N. Boshkov, K. Petrov, and G. Raichevsky, Corrosion Behavior and Protective Ability of Multilayer Galvanic Coatings of Zn and Zn-Mn Alloys in Sulfate Containing Medium, Surf. Coat. Technol., 2005, 200, p 5995–6001

    Article  Google Scholar 

  10. G. Govindarajan, V. Ramakrishnan, S. Ramamurthi, V. Subramanian, and N.V. Parthasaradhy, Electrodeposition of Zinc-Manganese Alloy Coating for Corrosion Resistant Applications, Bull. Electrochem., 1989, 5, p 422–426

    Google Scholar 

  11. T. Urakawa, M. Sagiyama, T. Adaniya, T. Hara, Corrosion-Resistance and Paintability of Zn-Mn Alloy Plated Steel Sheets, SAE Tech 860268, 1986

  12. M. Eyraud, A. Garnier, F. Mazeron, and Crousier, Morphology and Composition of Electrodeposited Zinc-Manganese Alloys, J. Plat. Surf. Finish., 1995, 82, p 63–70

    Google Scholar 

  13. M.V. Ananth and N.V. Parthasaradhy, Magnetization Behaviour of Electrodeposited Zn-Mn Alloys, Mater. Sci. Eng., 1996, 40, p 19–23

    Article  Google Scholar 

  14. M. Selvam and S. Guruviah, Corrosion of Electrodeposited Zinc-Manganese Alloys, Bull. Electrochem., 1990, 6, p 485–486

    Google Scholar 

  15. B. Bozzini, F. Pavan, G. Bollini, and P.L. Cavallotti, Zn-Mn Alloy Electrodeposition on Steel, Trans. Inst. Met. Finish., 1997, 75, p 175–180

    Google Scholar 

  16. B. Bozzini, F. Pavan, and P.L. Cavallotti, Experience with a Pilot Plant for the Electrodeposition of Zn-Mn on Wire, Trans. Inst. Met. Finish., 1998, 76, p 171–178

    Google Scholar 

  17. F. Soto, Electrodeposition of Zn-Mn Alloys on Steel for Corrosion Resistance, Ph.D. Thesis, Universite de Provence, Aix Marseille 1, 1998

  18. N. Boshkov, S. Vitkova, and K. Petrov, Corrosion Products of Zn-Mn Coatings: Part I. Investigations Using Microprobe Analysis and X-Ray Diffraction, Met. Finish., 2001, 99, p 56–60

    Article  Google Scholar 

  19. N. Boshkov, K. Petrov, and S. Vitkova, Corrosion Products of Zn-Mn Coatings: Part III. Double-protective Action of Manganese, Met. Finish., 2002, 100, p 98–102

    Article  Google Scholar 

  20. C. Muller, M. Sarret, and T. Andreu, Electrodeposition of Zn-Mn Alloys at Low Current Densities, J. Electrochem. Soc., 2002, 149, p C600–C606

    Article  Google Scholar 

  21. C. Muller, M. Sarret, and T. Andreu, Zn-Mn Alloys Obtained Using Pulse, Reverse and Superimposed Current Modulations, Electrochim. Acta, 2003, 48, p 2397–2404

    Article  Google Scholar 

  22. L.D. Ballote, R. Ramanauskas, and P.B. Perez, Mn Oxide Film as Corrosion Inhibitor of Zn-Mn Coatings, Corros. Rev., 2000, 18, p 41–51

    Article  Google Scholar 

  23. M.S. Chandrasekara and M. Shanmugasigamani, Synergetic Effects of Pulse Constraints and Additives in Electrodeposition of Nanocrystalline Zinc: Corrosion, Structural and Textural Characterization, Mater. Chem. Phys., 2010, 124, p 516–528

    Article  Google Scholar 

  24. M. Bucko, J. Rogan, S.I. Stevanovic, S. Stankovic, and J.B. Bajat, The Influence of Anion Type in Electrolyte on the Properties of Electrodeposited Zn\Mn Alloy Coatings, Surf. Coat. Technol., 2013, 228, p 221–228

    Article  Google Scholar 

  25. F. Endres, Ionic Liquids: Solvents for the Electrodeposition of Metals and Semi-Conductors, ChemPhysChem, 2002, 3, p 144–154

    Article  Google Scholar 

  26. S.Z. EI Abedin, F. Endres, Electrodeposition of Metals and Semiconductors in Air- and Water-stable Ionic Liquids, ChemPhysChem, 2006, 7, p 58–61

  27. J.F. Huang and I.W. Sun, Nonanomalous Electrodeposition of Zinc-Iron Alloys in an Acidic Zinc Chloride-1-Ethyl-3-Methylimidazolium Chloride Ionic Liquid, J. Electrochem. Soc., 2004, 151, p C8–C14

    Article  Google Scholar 

  28. J.F. Huang and I.W. Sun, Electrochemical Studies Tin in Zinc Chloride-1-Ethyl-3-Methylimidazolium Chloride Ionic Liquids, J. Electrochem. Soc., 2003, 150, p E299–E306

    Article  Google Scholar 

  29. M.C. Lin, P.Y. Chen, and I.W. Sun, Electrodeposition of Zinc Telluride from a Zinc Chloride-1-Ethyl-3-Methylimidazolium Chloride Molten Salt, J. Electrochem. Soc., 2001, 148, p C653–C658

    Article  Google Scholar 

  30. P.Y. Chen and I.W. Sun, Electrodeposition of Cobalt and Zinc-Cobalt from a Lewis Acidic Zinc Chloride-1-Ethyl-3-Methylimidazolium Chloride Molten Salt, Electrochim. Acta, 2001, 46, p 1169–1177

    Article  Google Scholar 

  31. J.F. Huang and I.W. Sun, Electrodeposition of Pt-Zn in a Lewis Acidic ZnCl2-1-Ethyl-3-Methylimidazolium Chloride Ionic Liquid, Electrochim. Acta, 2004, 49, p 3251–3258

    Article  Google Scholar 

  32. A.P. Abbott, G. Capper, D. Davies, and R.K. Rasheed, Ionic Liquid Analogues Formed from Hydrated Metal Salts, Chem. Eur. J., 2004, 10, p 3769–3774

    Article  Google Scholar 

  33. A.P. Abbott, K. El Ttaib, G. Grish, K.J. McKenzie, and K.S. Ryder, Electrodeposition of Copper Composites from Deep Eutectic Solvents Based on Choline Chloride, Phys. Chem. Chem. Phys., 2009, 11, p 4269–4277

    Article  Google Scholar 

  34. R. Bock and S.E. Wulf, Electrodeposition of Iron Films from an Ionic Liquid (ChCl/urea/FeCl3 Deep Eutectic Mixtures, Trans. Inst. Met. Finish., 2009, 87, p 28–32

    Article  Google Scholar 

  35. A. Bakkar and V. Neubert, Electrodeposition onto Magnesium in Air and Water Stable Ionic Liquids: From Corrosion to Successful Plating, Electrochem. Commun., 2007, 9, p 2428–2435

    Article  Google Scholar 

  36. C.D. Gu, Y.H. You, Y.L. Yu, S.X. Qu, J.P. Tu Microstructure, Nanoindentation, and Electrochemical Properties of the Nanocrystalline Nickel Film Electrodeposited from Choline Chloride-Ethylene Glycol, Surf Coat. Technol., 2011, 205, p 4928–4933

  37. C.D. Gu and J.P. Tu, Fabrication and Wettability of Nanoporous Silver Film on Copper from Choline Chloride-Based Deep Eutectic Solvents, J. Phys. Chem., 2010, 114, p 13614–13619

    Google Scholar 

  38. S. Fashu, C.D. Gu, X.L. Wang, and J.P. Tu, Influence of Electrodeposition Conditions on the Microstructure and Corrosion Resistance of Zn-Ni Alloy Coatings from a Deep Eutectic Solvent, Surf. Coat. Technol., 2014, 242, p 34–41

    Article  Google Scholar 

  39. A.P. Abbott, G. Capper, K. Mckenzie, and K. Ryder, Electrodeposition of Zinc-Tin Alloys from Deep Eutectic Solvents Based on Choline Chloride, J. Electroanal. Chem., 2007, 599, p 288–294

    Article  Google Scholar 

  40. P. Dale, A. Samantilleke, D. Shivagan, and L. Peter, Synthesis of Cadmium and Zinc Semiconductor Compounds from an Ionic Liquid Containing Choline Chloride and Urea, Thin Solid Films, 2007, 515, p 5751–5754

    Article  Google Scholar 

  41. H.Y. Yang, X.W. Guo, X.B. Chen, S.H. Wang, G.H. Wu, W.J. Dingb, and N. Birbilis, On the Electrodeposition of Nickel-Zinc Alloys from a Eutectic-Based Ionic Liquid, Electrochim. Acta, 2012, 63, p 131–138

    Article  Google Scholar 

  42. Y.H. You, C.D. Gu, X.L. Wang, and J.P. Tu, Electrodeposition of Ni-Co Alloys from a Deep Eutectic Solvent, Surf. Coat. Technol., 2012, 206, p 3632–3638

    Article  Google Scholar 

  43. C. Savall, C. Rebere, D. Sylla, M. Gadouleau, Ph Refait, and J. Creus, Morphological and Structural Characterisation of Electrodeposited Zn-Mn Alloys from Acidic Chloride Bath, Mater. Sci. Eng. A, 2006, 430, p 165–171

    Article  Google Scholar 

  44. S. Ganesan, G. Prabhu, and B.N. Popov, Electrodeposition and Characterization of Zn-Mn Coatings for Corrosion Protection, Surf. Coat. Technol., 2014, 238, p 143–151

    Article  Google Scholar 

  45. D. Sylla, C. Rebere, M. Gadouleau, C. Savall, J. Creus, and Ph Refait, Electrodeposition of Zn-Mn Alloys in Acidic and Alkaline Baths, Influence of Additives on the Morphological and Structural Properties, J. Appl. Electrochem., 2005, 35, p 1133–1139

    Article  Google Scholar 

  46. D. Sylla, J. Creus, C. Savall, O. Roggy, M. Gadouleau, and Ph Refait, Electrodeposition of Zn-Mn Alloys on Steel from Acidic Zn-Mn Chloride Solutions, Thin Solid Films, 2003, 424, p 171–178

    Article  Google Scholar 

  47. M. Farzaneh, K. Raeissi, and M. Golozar, Effect of Current Density on Deposition Process and Properties of Nanocrystalline Ni-Co-W Alloy Coatings, J. Alloys Compd., 2010, 489, p 488–492

    Article  Google Scholar 

  48. R. Ramanauskas, Structural Factor in Zn Alloy Electrodeposit Corrosion, Appl. Surf. Sci., 1999, 153, p 53–64

    Article  Google Scholar 

  49. S. Tezuka, S. Sakai, and Y. Nakagawa, Ferromagnetism of Mn-Zn Alloy, J. Phys. Soc. Jpn., 1960, 15, p 931

    Article  Google Scholar 

  50. Y. Nakagawa and T. Hori, Neutron Diffraction Studies of Mn-Zn Alloys, J. Phys. Soc. Jpn., 1964, 19, p 2082–2087

    Article  Google Scholar 

  51. M.V. Tomic, M.M. Bucko, M.G. Pavlovic, and J.B. Bajat, Corrosion Stability of Electrochemically Deposited Zn-Mn Alloy Coatings, Contemp. Mater., 2010, 1, p 1

    Article  Google Scholar 

  52. R. Ramanauskas, L. Gudaviciute, R. Juskenas, and O. Scit, Structural and Corrosion Characterization of Pulse Plated Nanocrystalline Zinc Coatings, Electrochim. Acta, 2007, 53, p 1801–1810

    Article  Google Scholar 

  53. A.C. Hegde, K. Venkatakrishna, and N. Eliaz, Electrodeposition of Zn-Ni, Zn-Fe and Zn-Ni-Fe Alloys, Surf. Coat. Technol., 2010, 205, p 2031–2041

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51271169, 51001089) and the Key Science and Technology Innovation Team of Zhejiang Province under Grant Number 2010R50013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fashu, S., Gu, C.D., Zhang, J.L. et al. Electrodeposition, Morphology, Composition, and Corrosion Performance of Zn-Mn Coatings from a Deep Eutectic Solvent. J. of Materi Eng and Perform 24, 434–444 (2015). https://doi.org/10.1007/s11665-014-1248-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1248-5

Keywords

Navigation