Skip to main content
Log in

Discharge and Corrosion Performance of AP65 Magnesium Alloy in Simulated Seawater: Effect of Temperature

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The discharge and corrosion performance of AP65 magnesium alloy in simulated seawater with different temperatures is investigated by electrochemical techniques and corrosion morphology observation. The results indicate that AP65 alloy can hardly be activated at a large current density in the 0 °C simulated seawater, whereas the activation time is shortened, and the potential exhibits a significantly negative shift in the 35 °C simulated seawater. However, the increase in temperature promotes the localized corrosion and thus is detrimental to the anode efficiency of AP65 alloy. Moreover, the effect of seawater temperature and current density on the surface morphology of AP65 alloy during the discharge process is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Cao, L. Wu, G. Wang, and Y. Lv, Electrochemical Oxidation Behavior of Mg-Li-Al-Ce-Zn and Mg-Li-Al-Ce-Zn-Mn in Sodium Chloride Solution, J. Power Sources, 2008, 183, p 799–804

    Article  Google Scholar 

  2. N. Wang, R. Wang, C. Peng, and Y. Feng, Enhancement of the Discharge Performance of AP65 Magnesium Alloy Anodes by Hot Extrusion, Corros. Sci., 2014, 81, p 85–95

    Article  Google Scholar 

  3. M. Lin, C. Tsai, and J. Uan, Electrochemical Behaviour and Corrosion Performance of Mg-Li-Al-Zn Anodes with High Al Composition, Corros. Sci., 2009, 51, p 2463–2472

    Article  Google Scholar 

  4. R. F. Koontz and R. D. Lucero, Magnesium Water-Activated Batteries, Handbook of Batteries, McGraw-Hill, New York, 2002, p 17.11–17.27.

  5. J. Zhao, K. Yu, Y. Hu, S. Li, X. Tan, F. Chen, and Z. Yu, Discharge Behavior of Mg-4wt.% Ga-2wt.% Hg Alloy as Anode for Seawater Activated Battery, Electrochim. Acta, 2011, 56, p 8224–8231

    Article  Google Scholar 

  6. N. Wang, R. Wang, C. Peng, Y. Feng, and B. Chen, Effect of Hot Rolling and Subsequent Annealing on Electrochemical Discharge Behavior of AP65 Magnesium Alloy as Anode for Seawater Activated Battery, Corros. Sci., 2012, 64, p 17–27

    Article  Google Scholar 

  7. Y. Feng, R. Wang, C. Peng, K. Qiu, N. Wang, C. Zhang, and J. Zhang, Aging Behaviour and Electrochemical Properties in Mg-4.8 Hg-8 Ga (wt.%) Alloy, Corros. Sci., 2010, 52, p 3474–3480

    Article  Google Scholar 

  8. R. Udhayan and D.P. Bhatt, On the Corrosion Behaviour of Magnesium and its Alloys Using Electrochemical Techniques, J. Power Sources, 1996, 63, p 103–107

    Article  Google Scholar 

  9. H. Zhao, P. Bian, and D. Ju, Electrochemical Performance of Magnesium Alloy and its Application on the Sea Water Battery, J. Environ. Sci., 2009, 21, p S88–S91

    Article  Google Scholar 

  10. R. Balasubramanian, A. Veluchamy, N. Venkatakrishnan, and R. Gangadharan, Electrochemical Characterization of Magnesium/Silver Chloride Battery, J. Power Sources, 1995, 56, p 197–199

    Article  Google Scholar 

  11. R. Balasubramanian, A. Veluchamy, and N. Venkatakrishnan, Gasometric Corrosion-Rate Studies of Magnesium Alloy in Magnesium Batteries, J. Power Sources, 1994, 52, p 305–308

    Article  Google Scholar 

  12. M. Merino, A. Pardo, R. Arrabal, S. Merino, P. Casajús, and M. Mohedano, Influence of Chloride Ion Concentration and Temperature on the Corrosion of Mg-Al Alloys in Salt Fog, Corros. Sci., 2010, 52, p 1696–1704

    Article  Google Scholar 

  13. M. Whitehouse, J. Priddle, and C. Symon, Seasonal and Annual Change in Seawater Temperature, Salinity, Nutrient and Chlorophyll A Distributions Around South Georgia, South Atlantic, Deep Sea Res. I, 1996, 43, p 425–443

    Article  Google Scholar 

  14. S. Yuan and S. Pehkonen, Surface Characterization and Corrosion Behavior of 70/30 Cu-Ni Alloy in Pristine and Sulfide-Containing Simulated Seawater, Corros. Sci., 2007, 49, p 1276–1304

    Article  Google Scholar 

  15. A. Suresh Kannan, S. Muralidharan, K. Sarangapani, V. Balaramachandran, and V. Kapali, Corrosion and Anodic Behaviour of Zinc and its Ternary Alloys in Alkaline Battery Electrolytes, J. Power Sources, 1995, 57, p 93–98

    Article  Google Scholar 

  16. M. Jönsson, D. Thierry, and N. LeBozec, The Influence of Microstructure on the Corrosion Behaviour of AZ91D Studied by Scanning Kelvin Probe Force Microscopy and Scanning Kelvin Probe, Corros. Sci., 2006, 48, p 1193–1208

    Article  Google Scholar 

  17. T. Zhang, Y. Shao, G. Meng, Z. Cui, and F. Wang, Corrosion of Hot Extrusion AZ91 Magnesium Alloy: I-Relation Between the Microstructure and Corrosion Behavior, Corros. Sci., 2011, 53, p 1960–1968

    Article  Google Scholar 

  18. K. Rashid, Effect of Mixing Speed and Solution Temperature on Cathodic Protection Current Density of Carbon Steel Using Magnesium as Sacrificial Anode, Eng. Technol. J, 2009, 27, p 1640–1653

    Google Scholar 

  19. N. Wang, R. Wang, C. Peng, and Y. Feng, Effect of Manganese on Discharge and Corrosion Performance of Magnesium Alloy AP65 as Anode for Seawater-Activated Battery, Corrosion, 2012, 68, p 388–397

    Article  Google Scholar 

  20. Y. Song, D. Shan, R. Chen, and E. Han, Corrosion Characterization of Mg-8Li Alloy in NaCl Solution, Corros. Sci., 2009, 51, p 1087–1094

    Article  Google Scholar 

  21. G. Song, Effect of Tin Modification on Corrosion of AM70 Magnesium Alloy, Corros. Sci., 2009, 51, p 2063–2070

    Article  Google Scholar 

  22. Y. Song, D. Shan, R. Chen, and E. Han, Effect of Second Phases on the Corrosion Behaviour of Wrought Mg–Zn–Y–Zr Alloy, Corros. Sci., 2010, 52, p 1830–1837

    Article  Google Scholar 

  23. G. Hoey and M. Cohen, Corrosion of Anodically and Cathodically Polarized Magnesium in Aqueous Media, J. Electrochem. Soc., 1958, 105, p 245–250

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the Postdoctoral Foundation of Central South University and the National Natural Science Foundation of China (No. 51101171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naiguang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Wang, R., Peng, C. et al. Discharge and Corrosion Performance of AP65 Magnesium Alloy in Simulated Seawater: Effect of Temperature. J. of Materi Eng and Perform 23, 4374–4384 (2014). https://doi.org/10.1007/s11665-014-1222-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1222-2

Keywords

Navigation