Skip to main content
Log in

Characteristics of High-Temperature Deformation Behavior of Ti-45Al-2Cr-3Ta-0.5W Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

High-temperature deformation behavior tests of as-cast Ti-45Al-2Cr-3Ta-0.5W alloy were conducted over a wide range of strain rates (0.001-1.0 s−1) and temperatures (1150-1300 °C). The flow curves for the current alloy exhibited sharp peaks at low strain levels, followed by pronounced work hardening and flow localization at high strain levels. Phenomenological analysis of the strain rate and temperature dependence of peak stress data yielded an average value of the strain rate sensitivity equal to 0.25 and an apparent activation energy of ~420 kJ/mol. Processing maps were established under different deformation conditions, and the optimal condition for hot work on this material was determined to be 1250 °C/0.001 s−1. The stable deformation region was also found to decrease with increasing strain. Dynamic recrystallization (DRX) was the major softening mechanism controlling the growth of grains at the grain boundary. Meanwhile, local globularization and dynamic recovery (DR) were the main softening mechanisms in the lamellar colony. When deformed at higher temperatures (~1300 °C), the cyclic DRX and DR appeared to dominate the deformation. Moreover, the evolution of the β phase during hot deformation played an important role in the dynamic softening of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.W. Kim, Microstructural Evolution and Mechanical Properties of a Forged Gamma Titanium Aluminide Alloy, Acta Metall., 1992, 40(6), p 1121–1134

    Article  Google Scholar 

  2. J. Zhang, L. He, Y. Cui, and H. Ye, Microstructural Characteristics of Ti-48Al-2Cr Alloy, J. Mater. Eng. Perform., 2001, 10(3), p 378–389

    Article  Google Scholar 

  3. T.T. Cheng, The Mechanism of Grain Refinement in TiAl Alloys by Boron Addition—An Alternative Hypothesis, Intermetallics, 2000, 8(1), p 29–37

    Article  Google Scholar 

  4. M.A. Muñoz-Morris, I. Gil, and D.G. Morris, Microstructural Stability of γ-Based TiAl Intermetallics Containing β Phase, Intermetallics, 2005, 13(9), p 929–936

    Article  Google Scholar 

  5. C.T. Liu, J.L. Wright, and S.C. Deevi, Microstructures and Properties of a Hot-Extruded TiAl Containing No Cr, Mater. Sci. Eng. A., 2002, 329–331, p 416–423

    Article  Google Scholar 

  6. T. Tetsui, K. Shindo, S. Kaji, S. Kobayashi, and M. Takeyama, Fabrication of TiAl Components by Means of Hot Forging and Machining, Intermetallics, 2005, 13(9), p 971–978

    Article  Google Scholar 

  7. H. Clemen, B. Boeck, and W. Wallgram, Expermental Studies and Thermodynamic Simulations of Phase Transformations in Ti-(41-45)Al-1Mo-0.1B Alloys, Mater. Res. Soc. Symp. Proc., 2009, 1128, p 3–6

    Google Scholar 

  8. J. Beddoes and W.R. Chen, Precipitation of β Particles in a Fully Lamellar Ti-47Al-2Nb-1Mn-0.5W-0.5Mo-0.2Si (at.%) Alloy, J. Mater. Sci., 2002, 37, p 621–627

    Article  Google Scholar 

  9. T. Tetsui, K. Shindo, S. Kobayashi, and M. Takeyama, A Newly Developed Hot Worked TiAl Alloy for Blades and Structural Components, Scripta Mater., 2002, 47(6), p 399–403

    Article  Google Scholar 

  10. F. Yang, F.T. Kong, Y.Y. Chen, and S.L. Xiao, Hot Workability of As-Cast Ti-45Al-5.4V-3.6Nb-0.3Y Alloy, J. Alloys Compd., 2014, 589, p 609–614

    Article  Google Scholar 

  11. X.M. He, Z.Q. Yu, and X.M. Lai, Analysis of High Temperature Deformation Behavior of a High Nb Containing TiAl Based Alloy, Mater. Lett., 2008, 62(26), p 4181–4183

    Article  Google Scholar 

  12. L.M. Hsiung, T.G. Nieh, and D.R. Clemens, Effect on Extrusion Temperature on the Microstructure of a Powder Metallurgy TiAl-Based Alloy, Scripta Mater., 1997, 36, p 233–238

    Article  Google Scholar 

  13. H. Clemens, W. Wallgram, and S. Kremmer, Design of Novel β-Solidifying TiAl Alloys with Adjustable β/B2 Fraction and Excellent Hot-Workability, Adv. Eng. Mater., 2008, 10, p 707–713

    Article  Google Scholar 

  14. F.T. Kong, Y.Y. Chen, D.L. Zhang, and S.Z. Zhang, High Temperature Deformation Behavior of Ti-46Al-2Cr-4Nb-0.2Y Alloy, Mater. Sci. Eng. A, 2012, 539(30), p 107–114

    Article  Google Scholar 

  15. D.L. Lin and F. Sun, Superplasticity in a Large-Grained TiAl Alloy, Intermetallics, 2004, 12(7–9), p 875–883

    Article  Google Scholar 

  16. R. Kainuma, Y. Fujita, H. Mitsui, I. Ohnuma, and K. Ishida, Phase Equilibria Among α (hcp), β (bcc) and γ (L10) Phases in Ti-Al Base Ternary Alloys, Intermetallics, 2000, 8(8), p 855–867

    Article  Google Scholar 

  17. H.Z. Niu, F.T. Kong, Y.Y. Chen, and F. Yang, Microstructure Characterization and Tensile Properties of β Phase Containing TiAl Pancake, J. Alloys. Compd., 2011, 509, p 10179–10184

    Article  Google Scholar 

  18. M. Eiwahabi, J.M. Cabrera, and J.M. Prado, Hot Working of Two AISI, 304 Steels: A Comparative Study, Mater. Sci. Eng. A, 2003, 343(1–2), p 116–125

    Google Scholar 

  19. Z.H. Huang, Workability and Microstructure Evolution of Ti-47Al-2Cr-1Nb Alloy During Isothermal Deformation, Intermetallics, 2005, 13(3–4), p 245–250

    Article  Google Scholar 

  20. P. Duval, F. Louchet, J. Weiss, and M. Montagnat, On the Role of Long-Range Internal Stresses on Grain Nucleation During Dynamic Discontinuous Recrystallization, Mater. Sci. Eng. A, 2012, 546, p 207–211

    Article  Google Scholar 

  21. F. Appel, J.D.H. Paul, and M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology, Wiley, Weinheim, 2011

    Book  Google Scholar 

  22. H.Z. Niu, Y.Y. Chen, S.L. Xiao, F.T. Kong, and C.J. Zhang, High Temperature Deformation Behaviors of Ti-45Al-2Nb-1.5V-1Mo-Y Alloy, Intermetallics, 2011, 19(12), p 1767–1774

    Article  Google Scholar 

  23. H. Zhang, W.C. Xu, and D.B. Shan, Hot Compression and Microstructural Evolution of Ti-43Al-5Nb-0.03Y Alloy, Rare Met. Mater. Eng., 2009, 38, p 1368–1372

    Article  Google Scholar 

  24. W. Roberts and G. Krauss, Deformation, Processing and Structure, American Society for Metals, Metal Park, OH, 1984, p 109–184

    Google Scholar 

  25. X. Ma, W.D. Zeng, BXuY Sun, C. Xue, and Y.F. Han, Characterization of the Hot Deformation Behavior of a Ti-22A-25Nb Alloy Using Processing Maps Based on the Murty Criterion, Intermetallics, 2012, 20(1), p 1–7

    Article  Google Scholar 

  26. Y.V.R.K. Prasad, S. Sasidhara, and V.K. Sikka, Characterization of Mechanisms of Hot Deformation of as-Cast Nickel Aluminide Alloy, Intermetallics, 2000, 8(9–11), p 987–995

    Article  Google Scholar 

  27. S.V.S.N. Murty, B.N. Rao, and B.P. Kashyap, Processing Maps for hot Deformation of α2 Aluminide Alloy Ti-24Al-11Nb, J. Mater. Sci., 2002, 37(6), p 1197–1201

    Article  Google Scholar 

  28. Y.V.R.K. Prasad, Processing Maps: A Status Report, J. Mater. Eng. Perform., 2003, 12(6), p 638–645

    Article  Google Scholar 

  29. Y.V.R.K. Prasad, Recent Advances in the Science of Mechanical Processing, Indian J. Technol., 1990, 28, p 435–451 ([in Indian])

    Google Scholar 

  30. C.M. Sabinash, S.M.L. Sastry, and K.L. Jerina, High-Temperature Deformation of Titanium Aluminide Alloys, Mater. Sci. Eng. A, 1995, 192(193), p 837–847

    Article  Google Scholar 

  31. H.Z. Li, M. Zeng, X.P. Liang, Z. Li, and Y. Liu, Flow Behavior and Processing Map of PM Ti-47Al-2Cr-02Mo Alloy, Trans. Nonferrous. Met. Soc. China., 2012, 22(3), p 754–760

    Article  Google Scholar 

  32. T.G. Nieh, L.M. Hsiung, and J. Wadsworth, Superplastic Behavior of a Powder Metallurgy TiAl alloy with a Metastable Microstructure, Intermetallics, 1999, 7(2), p 163–170

    Article  Google Scholar 

  33. V.G. Krishna, Y.V.R.K. Prasad, N.C. Birla, and G.S. Rao, Processing Map for the Hot Working of Near-α Titanium Alloy 685, J. Mater. Process. Technol., 1997, 71(3), p 377–383

    Article  Google Scholar 

  34. B. Liu, Y. Liu, Y.P. Li, W. Zhang, and A. Chiba, Thermomechanical Characterization of β-Stabilized Ti-45Al-7Nb-0.4W-0.15B Alloy, Intermetallics, 2011, 19(8), p 1184–1190

    Article  Google Scholar 

  35. Y. Wang, Y. Liu, G.Y. Yang, J.B. Li, B. Liu, J.W. Wang, and H.Z. Li, Hot Deformation Behaviors of β Phase Containing Ti-43Al-4Nb-1.4W-Based Alloy, Mater. Sci. Eng. A, 2013, 577(10), p 210–217

    Article  Google Scholar 

  36. G. Wang, L. Xu, Y.X. Tian, Z. Zheng, Y.Y. Cui, and R. Yang, Flow Behavior and Microstructure Evolution of a P/M TiAl Alloy During High Temperature Deformation, Mater. Sci. Eng. A, 2011, 528(22), p 6754–6763

    Article  Google Scholar 

  37. G. Wang, L. Xu, Y. Wang, Z. Zheng, Y.Y. Cui, and R. Yang, Processing Maps for Hot Working Behavior of a PM TiAl Alloy, J. Mater. Sci. Technol., 2011, 27, p 893–898

    Article  Google Scholar 

  38. S.L. Semiatin, M.R. Staker, and J.J. Jonas, Plastic Instability and Flow Localization in Shear at High Rates of Deformation, Acta Metall., 1984, 32, p 1347–1354

    Article  Google Scholar 

  39. S.L. Semiatin, V. Seetharaman, and I. Weiss, Hot Workability of Titanium and Titanium Aluminide Alloys—An Overview, Mater. Sci. Eng. A, 1998, 243(1–2), p 1–24

    Article  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the Natural Science Foundation of China (Nos. 51201138 and 51301140). The author would like to thank Dr. L. Li in Northwest Institute for Nonferrous Metal Research for providing the hot compression.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Y. Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y.Y., Xi, Z.P., Zeng, W.D. et al. Characteristics of High-Temperature Deformation Behavior of Ti-45Al-2Cr-3Ta-0.5W Alloy. J. of Materi Eng and Perform 23, 3577–3585 (2014). https://doi.org/10.1007/s11665-014-1175-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1175-5

Keywords

Navigation