Skip to main content
Log in

Synthesis and Characterization of Silver Nanoparticles and Silver Inks: Review on the Past and Recent Technology Roadmaps

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The synthesis of silver nanoparticles for silver ink formation has attracted broad interest in the electronic part printing and semiconductor chip industry due to the extraordinary electrical and mechanical properties of these materials. The preparation of silver nanoparticles through a physical or chemical reduction process is the most common methodology applied to obtain nanoparticles with the required size, shape and surface morphology. The chemical solution or solvent carrier applied for silver ink formulation must be applied simultaneously with the direct writing technique to produce the desired adherence, viscosity, and reliable performance. This review paper discusses the details concerning the past and recent advancement of the synthesis and characterization of silver nanoparticles and silver ink formation. A review on the advantages of various sintering techniques, which aim to achieve the electrical and mechanical properties of the required printed structure, is also included. A brief summary concerning the recent challenges and improvement approaches is presented at the end of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G.Z. Cao, Nanostructures and Nanomaterials, Imperial College Press, London, 2004

    Book  Google Scholar 

  2. K. Chang, Tiny is Beautiful: Translating “Nano” into Practical, The New York Times, 2005

  3. R. Das, S.S. Nath, D. Chakdar, G. Gope, and R. Bhattacharjee, Preparation of Silver Nanoparticles and Their Characterization, J. Nanotechnol., 2009, doi:10.2240/azojono0129

    Google Scholar 

  4. J.F. Dijksman, P.C. Duineveld, M.J.J. Hack, A. Pierik, J. Rensen, J.-E. Rubingh, I. Schram, and M.M. Vernhout, Precision Ink Jet Printing of Polymer Light Emitting Displays, J. Mater. Chem., 2007, 17, p 511–522

    Article  Google Scholar 

  5. H. Kobayashi, S. Kanbe, and S. Seki, A Novel RGB Multicolor Light-Emitting Polymer Display, Synth. Met., 2000, 111, p 125–128

    Article  Google Scholar 

  6. Y. Yoshioka and G.E. Jabbour, Desktop Inkjet Printer as a Tool to Print Conducting Polymers, Synth. Met, 2006, 156, p 779–783

    Article  Google Scholar 

  7. K.E. Paul, W.S. Wong, S.E. Ready, and R.A. Street, Additive Jet Printing of Polymer Thin-Film Transistor, Appl. Phys. Lett., 2003, 83, p 2070–2702

    Article  Google Scholar 

  8. D.C. Huang, F. Liao, S. Molesa, D. Redinger, and V. Subramanian, Plastic Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics, J. Electrochem. Soc., 2003, 150(7), p G412–G417

    Article  Google Scholar 

  9. B. Chen, T. Cui, Y. Liu, and K. Varahramyan, All Polymer RC Filter Circuits Fabricated with Inkjet Printing Technology, Solid-State Electron, 2003, 47, p 841–847

    Article  Google Scholar 

  10. C.N. Hoth, S.A. Choulis, P. Schilinsky, and C.J. Brabec, High Photovoltaic Performance of Inkjet Printed Polymer: Fullerene Blends, Adv. Mater., 2007, 19, p 3973

    Article  Google Scholar 

  11. E. Tekin, P.J. Smith, and U.S. Schubert, Inkjet Printing as a Deposition and Patterning Tool for Polymers and Inorganic Particles, Soft Matter, 2008, 4, p 703–713

    Article  Google Scholar 

  12. K.S. Chou and C.Y. Ren, Synthesis of Nanosized Silver Particles by Chemical, Reduction Method, Mater. Chem. Phys., 2000, 64, p 241–246

    Article  Google Scholar 

  13. K.K. Caswell, C.M. Bender, and C.J. Murphy, Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires, Nano Lett., 2003, 3, p 667–669

    Article  Google Scholar 

  14. Z.S. Pillai and P.V. Kamat, What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method, J. Phys. Chem. B, 2004, 108, p 945–995

    Article  Google Scholar 

  15. I. Pastoriza-Santos and L.M. Liz-Marzan, Synthesis of Silver Nanoprisms in DMF, Nano Lett., 2002, 2, p 903–905

    Article  Google Scholar 

  16. L.K. Kurihara, G.M. Chow, and P.E. Schoen, Nanocrystalline Metallic Powders and Films Produced by the Polyol Method, NanaShuchued Mater., 1995, 5, p 607–613

    Article  Google Scholar 

  17. I. Sondi, D.V. Goia, and E. Matijevic, Preparation of Highly Concentrated Stable Dispersions of Uniform Silver Nanoparticles, J. Colloid Interface Sci., 2003, 260, p 75–81

    Article  Google Scholar 

  18. Y. Yin, Z.Y. Li, Z. Zhong, B. Gates, Y. Xia, and S. Venkateswaran, Synthesis and Characterization of Stable Aqueous Dispersions of Silver Nanoparticles through the Tollens Process, J. Mater. Chem., 2002, 12, p 522–527

    Article  Google Scholar 

  19. Y. Sun and Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science, 2002, 298, p 2176–2179

    Article  Google Scholar 

  20. S. Komarneni, D. Li, B. Newalkar, H. Katsuki, and A.S. Bhalla, Microwave-Polyol Process for Pt and Ag Nanoparticles, Langmuir, 2002, 18, p 5959–5962

    Article  Google Scholar 

  21. F. Fieret, J.P. Lagier, and M. Figlarz, Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Poyol Process, MRS Bull., 1989, 14(12), p 29–34

    Article  Google Scholar 

  22. S. Puvvada, S. Baral, G.M. Chow, S.B. Qudri, and B.R. Ratna, Synthesis of Palladium Metal Nanoparticles in the Bicontinuous Cubic Phase of Glycerol Monooleate, J. Am. Chem. Soc., 1994, 116, p 2135–2136

    Article  Google Scholar 

  23. D.G. Duff, A. Baiker, I. Gamson, and P.P. Edwards, A new hydrosol of gold clusters. A. A comparison of some different measurement techniques, Langmuir, 1993, 9, p 2310–2317

    Article  Google Scholar 

  24. S. Ayyappan, R. Srinivasa Gopalan, G.N. Subbanna, and C.N.R. Rao, Nanoparticles of Ag, Au, Pd, and Cu Produced by Alcohol Reduction of the Salts, J. Mater. Res., 1997, 12(2), p 398–401

    Article  Google Scholar 

  25. I. Washio, Y. Xiong, Y. Yin, and Y. Xia, Reduction by the End Groups of Poly(vinyl pyrrolidone): A New and Versatile Route to the Kinetically Controlled Synthesis of Ag Triangular Nanoplates, Adv. Mater, 2006, 18, p 1745–1749

    Article  Google Scholar 

  26. A. Gautam, P. Tripathy, and S. Ram, Microstructure, Topology and X-ray Diffraction in Ag-Metal Reinforced Polymer of Polyvinyl Alcohol of Thin Laminates, J. Mater. Sci., 2006, 41, p 3007–3016

    Article  Google Scholar 

  27. R. Janardhanan, M. Karuppaiah, N. Hebalkar, and T.N. Rao, Synthesis and Surface Chemistry of Nano Silver Particles, Polyhedron, 2009, 28(12), p 2522–2530

    Article  Google Scholar 

  28. J. Steinfeld, Ed., Laser-Induced Chemical Processes, Plenum Press, New York, 1981

    Google Scholar 

  29. B. Braren, J.J. Dubowski, and D.P. Norton, Ed., Laser Ablation in Material Processing: Fundamental and Applications, MRS Symposium Proceedings, Pittsburgh, 1993

    Google Scholar 

  30. D. Bauerle, Laser Processing and Chemistry, 2nd ed., Springer-Verlag, Berlin, 1996

    Book  Google Scholar 

  31. J.C. Miller, R.F. Haglund, Eds., Laser Ablation and Desorption, Experimental Methods in the Physical Sciences, Academic Press, San Diego, 1998

  32. J. Neddersen, G. Chumanov, and T.M. Cotton, Laser Ablation of Metals: A New Method for Preparing SERS Active Colloids, Appl. Spectrosc., 1993, 47, p 1959–2177

    Article  Google Scholar 

  33. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution, J. Phys. Chem. B, 2000, 104, p 9111–9117

    Article  Google Scholar 

  34. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, Structure and Stability of Silver Nanoparticles in Aqueous Solution Produced by Laser Ablation, J. Phys. Chem. B, 2000, 104, p 8333–8337

    Article  Google Scholar 

  35. F. Mafune, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant, J. Phys. Chem. B, 2001, 105, p 5114–5120

    Article  Google Scholar 

  36. F. Mafune, J. Kohno, Y. Takeda, and T. Kondow, Dissociation and Aggregation of Gold Nanoparticles Under Laser Irradiation, J. Phys. Chem. B, 2001, 105, p 9050–9056

    Article  Google Scholar 

  37. S. Kim, W. S. Lee, J. Lee, I. Park, Direct Micro/Nano Metal Patterning Based on Two-Step Transfer Printing of Ionic Metal Nano-Ink. Nanotechnology, 2012, 23. doi:10.1088/0957-4484/23/28/285301

  38. W.W. Wits, A. Sridhar, Inkjet Printing of 3D Metallic Silver Complex Microstructures. International Conference on Competitive Manufacturing, 2010

  39. P.J. Smith, D.-Y. Shin, J.E. Stringer, N. Reis, and B. Derby, Direct Ink-Jet Printing and Low Temperature Conversion of Conductive Silver Patterns, J. Mater. Sci., 2006, 41(13), p 4153–4158

    Article  Google Scholar 

  40. A.L. Dearden, P.J. Smith, D.-Y. Shin, N. Reis, B. Derby, and P. O’Brien, A Low Curing Temperature Silver Ink for Use in Ink-Jet Printing and Subsequent Production of Conductive Tracks, Macromol. Rapid Commun., 2004, 26, p 315–318

    Article  Google Scholar 

  41. A. Sridhar, J. Reiding, H. Adelaar, F. Achterhoek, D.J. Van Dijk, and R. Akkerman, Inkjet-Printing- and Electroless-Plating Based Fabrication of RF Circuit Structures on High-Frequency Substrates, J. Micromech. Microeng., 2009, 19, p 085020

    Article  Google Scholar 

  42. Zheng.Chun. Liu, Su. Yi, and Kody. Varahramyan, Inkjet-Printed Silver Conductors Using Silver Nitrate Ink and Their Electrical Contacts with Conducting Polymers, Thin Solid Films, 2005, 478(1–2), p 275–279

    Article  Google Scholar 

  43. J. Perelaer, C.E. Hendriks, A.W.M. de Laat, and U.S. Schubert, One-Step Inkjet Printing of Conductive Silver Tracks on Polymer Substrates, Nanotechnology, 2009, 20, p 165303

    Article  Google Scholar 

  44. S. Brett Walker, and J.A. Lewis, Reactive Silver Inks for Patterning High-Conductivity Features at Mild Temperatures. J. Am. Chem. Soc., 2011, 134, p 1419–1421

  45. C.J. Curtis, D.L. Schulz, A. Miedaner, J. Alleman, T. Rivkin, J.D. Perkin, and D.S. Ginley, Spray and Inkjet Printing of Hybrid Nanoparticle-Metal-Organic Inks for Ag and Cu Metallizations. Mater. Res. Proc., 2001, 676, p 861

  46. D.S. Ginley, C.J. Curtis, A. Miedaner, M.F.A.M. Van Hest, T. Kaydanova, Metal Inks. Patent Number: US20080003364A1, 2008

  47. P. Buffat and J.-P. Borel, Size Effect on the Melting Temperature of Gold Particle, Phys. Rev. A, 1976, 13, p 2287–2298

    Article  Google Scholar 

  48. G.L. Allen, R.A. Bayles, W.W. Gile, and W.A. Jesser, Small Particle Melting of Pure Metals, Thin Solid Films, 1986, 144, p 297–308

    Article  Google Scholar 

  49. W.H. Qi and M.P. Wang, Size Effect on the Cohesive Energy of Nanoparticle, J. Mater. Sci. Lett., 2002, 21, p 1743

    Article  Google Scholar 

  50. K.K. Nanda, S.N. Sahu, and S.N. Behera, Liquid-Drop Model for the Size-Dependent Melting of Low-Dimensional Systems, Phys. Rev. A, 2002, 66, p 013208

    Article  Google Scholar 

  51. J. Sun and S.L. Simon, The Melting Behavior of Aluminum Nanoparticles, Thermochim. Acta, 2007, 463, p 32

    Article  Google Scholar 

  52. M.-S. Elpidio, G.-P. Jesús, N.-T. María, Q.-G. Cristina, C.-J. Martha, L.-S. Francisco, G.-H. Jesús, and R. Facundo, Synthesis of Silver Nanoparticles Using Albumin as a Reducing Agent, Mater. Sci. Appl., 2011, 2, p 578–581

    Google Scholar 

  53. A.J. Lovinger, Development of Electrical Conduction in Silver-Filled Epoxy Adhesives, J. Adhes., 1979, 10, p 1–15

    Article  Google Scholar 

  54. J.R. Greer and R.A. Street, Thermal Cure Effects on Electrical Performance of Nanoparticle Silver Inks, Acta Mater., 2007, 55, p 6345–6349

    Article  Google Scholar 

  55. J. Perelaer, A.W.M. de Laat, C.E. Hendriks, U.S. Schubert, Inkjet-Printed Silver Tracks: Low Temperature Curing and Thermal Stability Investigation. J. Mater. Chem., 2008, 18, p. 3209–3215

  56. H. Wijshoff, The Dynamics of the Piezo Inkjet Printhead Operation, Phys. Rep., 2010, 491, p 77–177

    Article  Google Scholar 

  57. K.-S. Chou, K.-C. Huang, and H.-H. Lee, Fabrication and Sintering Effect on the Morphologies and Conductivity of Nano-Ag Particle Films by the Spin Coating Method, Nanotechnology, 2005, 16, p 779–784

    Article  Google Scholar 

  58. K. Yamasaki, K. Maekawa, T. Niizeki, M. Mita, Y. Matsuba, N. Terada, H. Saito, Temperature Soak Reliability of Laser-Sintered Ag Pads for Wire Bonding. 13th Electronics Packaging Technology Conference, 2011

  59. K. Maekawa, K. Yamasaki, T. Niizeki, M. Mita, Y. Matsuba, N. Terada, H. Saito, High-Speed Laser Plating on Cu Lead Frame Using Ag Nanoparticles, Electronic Components and Technology Conference, 2010

  60. G. Xie, O. Ohashi, N. Yamaguchi, and A. Wang, Effect of Surface Oxide Films on the Properties of Pulse Electric-Current Sintered Metal Powders, Metall. Mater. Trans. A, 2003, 34A, p 2655–2661

    Article  Google Scholar 

  61. Z. Radivojevic, K. Andersson, K. Hashizume, M. Heino, M. Mantysalo, P. Mansikkamaki, Y. Matsuba, N. Terada, Optimised Curing of Silver Ink Jet Based Printed Traces, Proceedings of 12th Intl. Workshop on Thermal investigations of ICs, 2006, p. 133-138, ISBN 2-916187-04-9

  62. J. Perelaer, B.-J. de Gans, and U.S. Schubert, Ink-Jet Printing and Microwave Sintering of Conductive Silver Tracks, Adv. Mater., 2006, 18, p 2101–2104

    Article  Google Scholar 

  63. H.-S. Kim, S.R. Dhage, D.-E. Shim, and H.T. Hahn, Intense Pulsed Light Sintering of Copper Nanoink for Printed Electronics, Appl. Phys. A, 2009, 97, p 791–798

    Article  Google Scholar 

  64. I. Reinhold, C.E. Hendriks, R. Eckardt, J.M. Kranenburg, J. Perelaer, R.R. Baumann, and U.S. Schubert, Argon Plasma Sintering of Inkjet Printed Silver Tracks on Polymer Substrates, J. Mater. Chem., 2009, 19, p 3384–3388

    Article  Google Scholar 

  65. M.J. Renn, WO Patent Number: 2007/070868 A2, 2007

  66. L.H. Liang, C.M. Shen, S.X. Du, W.M. Liu, X.C. Xie, and H.J. Gao, Increase in Thermal Stability Induced by Organic Coatings on Nanoparticles, Phys. Rev B., 2004, 70, p 205419

    Article  Google Scholar 

  67. J.F. Mei, Formulation and Processing of Conductive Inks for Inkjet Printing of Electrical Components, University of Pittsburgh, Pittsburgh, 2004

  68. S. Magdassi, M. Grouchko, and A. Kamyshny, Conductive Inkjet Inks for Plastic Electronics: Air Stable Copper Nanoparticles and Room Temperature Sintering. NIP25 and Digital Fabrication, Tech. Progr. Proc., 2009, 2009, p 611–613

    Google Scholar 

  69. R.J. Jouet, J.R. Carney, R.H. Granholm, H.W. Sandusky, and A.D. Warren, Preparation and Reactivity Analysis of Novel Perfluoroalkyl Coated Aluminium Nanocomposites, Mater. Sci. Technol., 2006, 22, p 422–429

    Article  Google Scholar 

  70. M. Grouchko, A. Kamyshny, and S. Magdassi, Formation of Air-Stable Copper-Silver Core-Shell Nanoparticles for Inkjet Printing, J. Mater. Chem., 2009, 19, p 3057–3062

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin Yung Lai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, C.Y., Cheong, C.F., Mandeep, J.S. et al. Synthesis and Characterization of Silver Nanoparticles and Silver Inks: Review on the Past and Recent Technology Roadmaps. J. of Materi Eng and Perform 23, 3541–3550 (2014). https://doi.org/10.1007/s11665-014-1166-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1166-6

Keywords

Navigation