Skip to main content
Log in

Development of a Plane Strain Tensile Geometry to Assess Shear Fracture in Dual Phase Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A geometrically modified sample capable of generating a triaxial stress state when tested on a standard uniaxial tensile frame was developed to replicate shear fractures observed during stretch bend tests and industrial sheet stamping operations. Seven commercially produced dual phase (DP) steels were tested using the geometrically modified sample, and the modified sample successfully produced shear fractures on a unique shear plane for all steels. For each steel, void densities were determined, based on metallographic analyses, as a function of imposed displacement. Microstructural properties of ferrite and martensite grain size, martensite volume fraction (MVF), retained austenite content, Vickers hardness, average nanoindentation hardness, average ferrite and martensite constituent hardness, and tensile properties were obtained in order to evaluate potential correlations with void data. A linear correlation was observed between Vickers hardness and the average nanoindentation hardness, verifying the ability of nanoindentation to produce data consistent with more traditional hardness measurement techniques. A linear relationship was observed between the number of voids present at 90% failure displacement and the martensite/ferrite hardness ratio, indicating that a decrease in relative hardness difference in a microstructure can suppress void formation, and potentially extend formability limits. The void population appeared independent of MVF, grain size, and tensile properties suggesting that constituent hardness may be a dominant parameter when considering suppression of void nucleation in DP steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R. Kuziak, R. Kawalla, and S. Waengler, Advanced High Strength Steels for Automotive Industry, Arch. Civil Mech. Eng., 2008, 8(2), p 222–224

    Google Scholar 

  2. O.J. Kwon, K.Y. Lee, G.S. Kim, and K.G. Chin, New Trends in Advanced High Strength Steel Developments for Automotive Application, Mater. Sci. Forum, 2010, 638–642, p 136–141

    Article  Google Scholar 

  3. J. Dykeman, Advanced High Strength Steel-Recent Progress, Ongoing Challenges, and Future Opportunities, Assoc. Iron Steel Technol., 2013, 1, p 15–28

    Google Scholar 

  4. R.G. Davies, Influence of Martensite Composition and Content on the Properties of Dual Phase Steels, Metall. Trans. A, 1978, 9, p 671–679

    Article  Google Scholar 

  5. N. Pottore, D. Bhattacharya, N. Fonstein, and I. Gupta, A Family of 980 MPa Tensile Strength Advanced High Strength Steels with Various Mechanical Property Attributes, AHSSS Proc., 2004, p 119–129

  6. J.H. Kim, M.G. Lee, D. Kim, D.K. Matlock, and R.H. Wagoner, Hole-Expansion Formability of Dual-Phase Steels Using Representative Volume Element Approach with Boundary-Smoothing Technique, Mater. Sci. Eng. A, 2010, 527(27–28), p 7353–7363

    Article  Google Scholar 

  7. G. Rosenberg, I. Sinaiová, and Ľ. Juhar, Effect of Microstructure on Mechanical Properties of Dual Phase Steels in the Presence of Stress Concentrators, Mater. Sci. Eng. A, 2013, 582, p 347–358

    Article  Google Scholar 

  8. N. Saeidi and A. Ekrami, Comparison of Mechanical Properties of Martensite/Ferrite and Bainite/Ferrite Dual Phase 4340 Steels, Mater. Sci. Eng. A, 2009, 523(1–2), p 125–129

    Article  Google Scholar 

  9. M. Miura, M. Nakaya, and Y. Mukai Cold Rolled, 980 MPa Grade Steel Sheets with Excellent Elongation and Stretch Flangeability, Kobelco Technol. Rev., 2008, 28, p 8–12

    Google Scholar 

  10. C.C. Tasan, J.P.M. Hoefnagels, and M.G.D. Geers, Indentation-Based Damage Quantification Revisited, Scripta Mater., 2010, 63(3), p 316–319

    Article  Google Scholar 

  11. J. Kadkhodapour, A. Butz, and S. Ziaei Rad, Mechanisms of Void Formation During Tensile Testing in a Commercial, Dual-Phase Steel, Acta Mater., 2011, 59(7), p 2575–2588

    Article  Google Scholar 

  12. K.S. Choi, A. Soulami, D. Li, X. Sun, and M. Khaleel, Relationship Between Material Properties and Local Formability of DP980 Steels, SAE Int., 2012

  13. A. Hudgins, D. Matlock, and J. Speer, The Susceptibility to Shear Fracture in Bending of Advanced High Strength Sheet Steels, MS&T Conf. Proc., 2007, p 145–157

  14. F. Hisker, R. Thiessen, and T. Heller, Influence of Microstructure on Damage in Advanced High Strength Steels, Mater. Sci. Forum, 2012, 706–709, p 925–930

    Article  Google Scholar 

  15. T.M. Link and G. Chen, Anisotropy Effects in the Axial Crash Behavior of Advanced High-Strength Steels, Assoc. Iron Steel Technol., 2013, p 63–70

  16. M.S. Walp, A. Wurm, J.F. Siekirk, and A.K. Desai, Shear Fracture in Advanced High Strength Steels, SAE Int., 2006, 01(1433), p 1–7

    Google Scholar 

  17. A.W. Hudgins, D.K. Matlock, J.G. Speer, and C.J. Van Tyne, Predicting Instability at Die Radii in Advanced High Strength Steels, J. Mater. Process. Technol., 2010, 210(5), p 741–750

    Article  Google Scholar 

  18. A.W. Hudgins, D.K. Matlock, and J.G. Speer, Shear Failures in Bending of Advanced High Strength Steels, IDDRG Conf. Proc., 2009, p 53–64

  19. J.H. Kim, J.H. Sung, K. Piao, and R.H. Wagoner, The Shear Fracture of Dual-Phase Steel, Int. J. Plast., 2011, 27(10), p 1658–1676

    Article  Google Scholar 

  20. G.E. Dieter, Ductile Fracture, Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, 1986, p 262–265

    Google Scholar 

  21. M.D. Taylor, Effect of Microstructure on the Fracture Response of AHSS, M.S. thesis, Colorado School of Mines, 2013

  22. P. Flores, V. Tuninetti, G. Gilles, P. Gonry, L. Duchêne, and A.M. Habraken, Accurate Stress Computation in Plane Strain Tensile Tests for Sheet Metal using Experimental Data, J. Mater. Process. Technol., 2010, 210(13), p 1772–1779

    Article  Google Scholar 

  23. M.-S. Aydın, J. Gerlach, L. Kessler, and A.E. Tekkaya, Yield Locus Evolution and Constitutive Parameter Identification Using Plane Strain Tension and Tensile Tests, J. Mater. Process. Technol., 2011, 211(12), p 1957–1964

    Article  Google Scholar 

  24. K. Inal, P.D. Wu, and K.W. Neale, Instability and Localized Deformation in Polycrystalline Solids Under Plane-Strain Tension, Int. J. Solids Struct., 2002, 39(4), p 983–1002

    Article  Google Scholar 

  25. P. Flores, L. Duchene, C. Bouffioux, T. Lelotte, C. Henrard, N. Pernin, A. Van Bael, S. He, J. Duflou, and A.M. Habraken, Model Identification and FE Simulations: Effect of Different Yield Loci and Hardening Laws in Sheet Forming, Int. J. Plast., 2007, 23(3), p 420–449

    Article  Google Scholar 

  26. R.K. Everett, K.E. Simmonds, and A.B. Geltmacher, Spatial Distribution of Voids in HY-100 Steel by X-Ray Tomography, Scripta Mater., 2001, 44(1), p 165–169

    Article  Google Scholar 

  27. C. Landron, O. Bouaziz, E. Maire, and J. Adrien, Characterization and Modeling of Void Nucleation by Interface Decohesion in Dual Phase Steels, Scripta Mater., 2010, 63(10), p 973–976

    Article  Google Scholar 

  28. P.J. Jacques, Q. Furnémont, F. Lani, T. Pardoen, and F. Delannay, Multiscale Mechanics of TRIP-Assisted Multiphase Steels: I. Characterization and Mechanical Testing, Acta Mater., 2007, 55(11), p 3681–3693

    Article  Google Scholar 

  29. J. Moon, S. Kim, J. Jang, J. Lee, and C. Lee, Orowan Strengthening Effect on the Nanoindentation Hardness of the Ferrite Matrix in Microalloyed Steels, Mater. Sci. Eng. A, 2008, 487(1–2), p 552–557

    Article  Google Scholar 

  30. T. Ohmura and K. Tsuzaki, Plasticity Initiation and Subsequent Deformation Behavior in the Vicinity of Single Grain Boundary Investigated Through Nanoindentation Technique, J. Mater. Sci., 2007, 42(5), p 1728–1732

    Article  Google Scholar 

  31. T. Ohmura, K. Tsuzaki, and F. Yin, Nanoindentation-Induced Deformation Behavior in the Vicinity of Single Grain Boundary of Interstitial-Free Steel, Mater. Trans., 2005, 46(9), p 2026–2029

    Article  Google Scholar 

  32. K.R. Gadelrab, G. Li, M. Chiesa, and T. Souier, Local Characterization of Austenite and Ferrite Phases in Duplex Stainless Steel Using MFM and Nanoindentation, J. Mater. Res., 2012, 27(12), p 1573–1579

    Article  Google Scholar 

  33. R. Rodriguez and I. Gutierrez, Correlation Between Nanoindentation and Tensile Properties Influence of the Indentation Size Effect, Mater. Sci. Eng. A, 2003, 361, p 377–384

    Article  Google Scholar 

  34. K. Hayashi, K. Miyata, F. Katsuki, T. Ishimoto, and T. Nakano, Individual Mechanical Properties of Ferrite and Martensite in Fe-0.16mass% C-1.0mass% Si-1.5mass% Mn Steel, J. Alloys Compd., 2013, 577(15), p 593–596

    Article  Google Scholar 

  35. M. Delince, P. Jacques, and T. Pardoen, Separation of Size-Dependent Strengthening Contributions in Fine-Grained Dual Phase Steels by Nanoindentation, Acta Mater., 2006, 54(12), p 3395–3404

    Article  Google Scholar 

  36. M.D. Taylor, K.S. Choi, X. Sun, D.K. Matlock, C.E. Packard, L. Xu, and F. Barlat, Correlations Between Nanoindentation Hardness and Macroscopic Mechanical Properties in DP980 Steels, Mater. Sci. Eng. A, 2014, 597, p 431–439

    Article  Google Scholar 

  37. A.W. Hudgins, Shear Failures in Bending of Advanced High Strength Steels, Ph.D. thesis, Colorado School of Mines, 2010

  38. E. Maire, O. Bouaziz, M. Di Michiel, and C. Verdu, Initiation and Growth of Damage in a Dual-Phase Steel Observed by X-Ray Microtomography, Acta Mater., 2008, 56(18), p 4954–4964

    Article  Google Scholar 

  39. D.K. Matlock, F. Zia-Ebrahimi, and G. Krauss, Structure, Properties, and Strain Hardening of Dual-Phase Steels, Am. Soc. Met., 1982, 8502, p 47–87

  40. O.R. Jardim, W.P. Longo, and K.K. Chawla, Fracture Behavior of a Tempered Dual Phase Steel, Metallography, 1984, 17(2), p 123–130

    Article  Google Scholar 

  41. H. Ghadbeigi, C. Pinna, S. Celotto, and J.R. Yates, Local Plastic Strain Evolution in a High Strength Dual-Phase Steel, Mater. Sci. Eng. A, 2010, 527(18–19), p 5026–5032

    Article  Google Scholar 

  42. G.E. Dieter, Fiber Strengthening, Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, 1986, p 222

    Google Scholar 

  43. M. Erdogan and S. Tekeli, The Effect of Martensite Particle Size on Tensile Fracture of Surface-Carburised AISI, 8620 Steel with Dual Phase Core Microstructure, Mater. Des., 2002, 23(7), p 597–604

    Article  Google Scholar 

  44. G. Avramovic-Cingara, Y. Ososkov, M.K. Jain, and D.S. Wilkinson, Effect of Martensite Distribution on Damage Behaviour in DP600 Dual Phase Steels, Mater. Sci. Eng. A, 2009, 516(1–2), p 7–16

    Article  Google Scholar 

  45. D.L. Steinbrunner, D.K. Matlock, and G. Krauss, Void Formation During Tensile Testing of Dual Phase Steels, Metall. Trans. A, 1988, 19, p 579–589

    Article  Google Scholar 

  46. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Deformation and Fracture Mechanisms in Fine- and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging, Acta Mater., 2011, 59(2), p 658–670

    Article  Google Scholar 

  47. S. Mediratta, V. Ramaswamy, and P. Rao, Influence of Ferrite-Martensite Microstructural Morphology on the Low Cycle Fatigue of a Dual-Phase Steel, Int. J. Fatigue, 1985, 7(2), p 107–115

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Advanced Steel Processing and Products Research Center, and Industry-University Cooperative research center at the Colorado School of Mines (CSM). Helpful discussions with Drs. Xin Sun and Kyoo Sil Choi of Pacific Northwest National Laboratory and Prof. Corinne Packard of CSM are also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Taylor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, M.D., Matlock, D.K., De Moor, E. et al. Development of a Plane Strain Tensile Geometry to Assess Shear Fracture in Dual Phase Steels. J. of Materi Eng and Perform 23, 3685–3694 (2014). https://doi.org/10.1007/s11665-014-1154-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1154-x

Keywords

Navigation