Skip to main content

Advertisement

Log in

A Multiaxial Low Cycle Fatigue Life Prediction Model for Both Proportional and Non-proportional Loading Conditions

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper has presented a life prediction model in the field of multiaxial low-cycle fatigue. The proposed model is generally applied for constant amplitude multiaxial proportional and non-proportional loading. Depending upon applied strain path the equivalent strain varies within a cycle. Equivalent average strain amplitude is considered as fatigue damage parameter in the proposed model. The model has requirement of only two material constants and no other tuning parameters. The model is examined by the proportional and non-proportional low-cycle fatigue life experimental data for eight different types of materials. The model is successfully correlated with multiaxial fatigue lives of eight different materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O.H. Basquin, The Exponential Law of Endurance Tests, Proc. ASTM, 1910, 10, p 625–630

    Google Scholar 

  2. L.F. Coffin, A Study of the Effects of Cyclic Thermal Stress on a Ductile Metal, Trans. ASME, 1954, 76, p 931–950

    Google Scholar 

  3. S.S. Manson, Behavior of Materials Under Conditions of Thermal Stress, Heat Transfer Symposium, University of Michigan Engineering Research Institute, Michigan, 1953

  4. E. Macha and C.M. Sonsino, Energy Criteria of Multiaxial Fatigue Failure, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 1053–1070

    Article  Google Scholar 

  5. E. Macha, A Review of Energy-Based Multiaxial Fatigue Failure Criteria, Arch. Mech. Eng., 2001, 48, p 71–101

    Google Scholar 

  6. M.W. Brown and K.J.A. Miller, Theory for Fatigue Failure Under Multiaxial Stress-Strain Condition, Proc. Inst. Mech. Eng., 1973, 187(65), p 745–755

    Google Scholar 

  7. A. Fatemi and D.F. Socie, A Critical Plane Approach to Multiaxial Fatigue Damage Including out of Phase Loading, Fatigue Fract. Eng. Mater. Struct., 1988, 11, p 149–165

    Article  Google Scholar 

  8. D.F. Socie, Multiaxial Fatigue Damage Models, Trans. ASME J. Eng. Mater. Technol., 1987, 109, p 293–298

    Article  Google Scholar 

  9. K.S. Kim, K.M. Nam, G.J. Kwak, and S.M. Hwang, A Fatigue Life Model for 5% Chrome Work Roll Steel Under Multiaxial Loading, Int. J. Fatigue, 2004, 26, p 683–689

    Article  Google Scholar 

  10. A. Varvani-Farahani, A New Energy-Critical Plane Parameter for Fatigue Life Assessment of Various Metallic Materials Subjected to In-Phase and Out-of Phase Multiaxial Fatigue Loading Condition, Int. J. Fatigue, 2000, 22, p 295–305

    Article  Google Scholar 

  11. X. Chen, S. Xu, and D. Huang, A Critical Plane-Strain Energy Density Criterion for Multiaxial Low-Cycle Fatigue Life Under Non-proportional Loading, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 679–686

    Article  Google Scholar 

  12. Y. Liu and S. Mahadevan, Strain-Based Multiaxial Fatigue Damage Modeling, Fatigue Fract. Eng. Mater. Struct., 2005, 28, p 1177–1189

    Article  Google Scholar 

  13. A. Karolczuk and E. Macha, A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials, Int. J. Fract., 2005, 134, p 267–304

    Article  Google Scholar 

  14. D. Stouffer and T. Dame, Inelastic Deformation of Metals, Wiley, New York, 1996

    Google Scholar 

  15. N. Shamsaei, A. Fatemi, and D.F. Socie, Multiaxial Cyclic Deformation and Non-proportional Hardening Employing Discriminating Load Paths, Int. J. Plast., 2010, 26(12), p 1680–1701

    Article  Google Scholar 

  16. N. Shamsaei and A. Fatemi, Effect of Microstructure and Hardness on Non-proportional Cyclic Hardening Coefficient and Predictions, Mater. Sci. Eng. A, 2010, 527(12), p 3015–3024

    Article  Google Scholar 

  17. N. Shamsaei, M. Gladskyi, K. Panasovskyi, S. Shukaev, and A. Fatemi, Multiaxial Fatigue of Titanium Including Step Loading and Load Path Alteration and Sequence Effects, Int. J. Fatigue, 2010, 32(11), p 1862–1874

    Article  Google Scholar 

  18. M. Gladskyi and S. Shukaev, A New Model for Low Cycle Fatigue of Metal Alloys Under Non-proportional Loading, Int. J. Fatigue, 2010, 32, p 1568–1572

    Article  Google Scholar 

  19. M. Noban, H. Jahed, E. Ibrahim, and A. Ince, Load Path Sensitivity and Fatigue Life Estimation of 30CrNiMo8HH, Int. J. Fatigue, 2012, 37, p 123–133

    Article  Google Scholar 

  20. Y. Dong, G. Kang, Y. Liu, and H. Jiang, Multiaxial Ratcheting of 20 Carbon Steel: Macroscopic Experiments and Microscopic Observations, Mater. Charact., 2013, 83, p 1–12

    Article  Google Scholar 

  21. S. Kida, T. Itoh, M. Sakane, M. Ohanmi, and D.F. Socie, Dislocation Structure and Non-proportional Hardening of Type 304 Stainless Steel, Fatigue Fract. Eng. Mater. Struct., 1997, 20, p 1375–1386

    Article  Google Scholar 

  22. M. Noban, H. Jahed, S. Winkler, and A. Ince, Fatigue Characterization and Modeling of 30CrNiMo8HH Under Multiaxial Loading, Mater. Sci. Eng. A, 2011, 528(6), p 2484–2494

    Article  Google Scholar 

  23. X. Chen, Q. Gao, and X.F. Sm, Low Cycle Fatigue Under Non-proportional Loading, Fatigue. Fract. Eng. Mater. Struct., 1996, 19(7), p 839–854

    Article  Google Scholar 

  24. G.-Q. Sun and D-G.Shang, Prediction of Fatigue Lifetime Under Multiaxial Cyclic Loading Using Finite Element Analysis, Mater. Des., 2010, 31, p 126

    Article  Google Scholar 

  25. Y. Jiang, O. Hertel, and M. Vormwald, An Experimental Evaluation of Three Critical Plane Multiaxial Fatigue Criteria, Int. J. Fatigue, 2007, 29, p 1490–1502

    Article  Google Scholar 

  26. P. Arora, S.K. Gupta, V. Bhasin, K.K. Vaze, S. Sivaprasad, and S.Tarafder, Multiaxial Fatigue Studies on Carbon Steel Piping Material of Indian PHWRs Transactions, SMiRT-21, November 6-11, 2011, New Delhi, India Div-II: Paper ID #479, 2011.

Download references

Acknowledgments

The authors would like to acknowledge Dr. S. Shivaprasad, Dr. S. Tarafder, National Metallurgical Laboratory (CSIR), Jamshedpur, India and Dr. Saurabh Kundu, R&D, Tata Steel Limited, Jamshedpur, India for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Kumar Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S.K. A Multiaxial Low Cycle Fatigue Life Prediction Model for Both Proportional and Non-proportional Loading Conditions. J. of Materi Eng and Perform 23, 3100–3107 (2014). https://doi.org/10.1007/s11665-014-1107-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1107-4

Keywords

Navigation