Skip to main content
Log in

Comparison of Biocorrosion due to Desulfovibrio desulfuricans and Desulfotomaculum nigrificans Bacteria

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

One observes several species of sulfate-reducing bacteria in nature. Presence of these species in a media may cause microbial influenced corrosion (MIC) of materials differently. To investigate this aspect of MIC, corrosion tests were performed on three types of stainless steels. The tests were done in modified Baar’s media inoculated separately by the two species of SRB namely Desulfovibrio desulfuricans (DD) and Desulfotomaculum nigrificans (DN). Electrochemical and immersion tests were performed to assess the extent of uniform and localized corrosion of these steels. Biofilms formed on the corroded samples were analyzed for estimating various components of its extracellular polymeric substances. Hydrogenase enzyme of these bacteria was tested to determine its nature and activity. Higher degree of corrosivity was observed in case of media inoculated with DD as compared to DN. More active nature of hydrogenase enzyme, its location in the periplasmic phase in DD and higher fraction of carbohydrate in biofilm formed due to DD have been suggested to be responsible for higher degree of corrosivity caused by them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.C. Fleming, Economical and Technical Overview, Microbial Influenced Corrosion of Materials, E. Heitz, H.C. Flemming, and W. Sand, Ed., Springer, Berlin, 1996, p 5–14

    Chapter  Google Scholar 

  2. W.P. Iverson, Microbial Corrosion of Metals, Adv. Appl. Microbiol., 1987, 32, p 1–36

    Article  CAS  Google Scholar 

  3. W. Lee, H.P. Nielsen, and A.W. Hamilton, Role of Sulfate reducing bacteria in Corrosion of Mild steel: A Review, Biofouling, 1995, 8, p 165–194

    Article  CAS  Google Scholar 

  4. H.A. Videla, Manual of Biocorrosion, Lewis Publishers, Boca Raton, FL, 1996

    Google Scholar 

  5. R. Javaherdashti, A Review of Some Characteristics of MIC Caused by Sulfate Reducing Bacteria: Past, Present and Future, Anti-Corros. Methods Mater., 1999, 46(3), p 173–180

    Article  CAS  Google Scholar 

  6. E. Miranda, M. Bethencourt, F.J. Botana, M.J. Cano, J.M. Sánchez-Amaya, A. Corzo, J. García de Lomas, M.L. Fardeau, and B. Ollivier, Biocorrosion of Carbon Steel Alloys by an Hydrogenotrophic Sulfate-Reducing Bacterium Desulfovibrio capillatus Isolated from a Mexican Oil Field Separator, Corros. Sci., 2006, 48, p 2417–2431

    Article  CAS  Google Scholar 

  7. R. Singleton, The Sulphate-Reducing Bacteria: An Overview, The Sulfate-Reducing Bacteria: Contemporary Perspectives, J.M. Odom and J.R. Singleton, Ed., Springer, New York, 1993

    Google Scholar 

  8. R. Javaherdashti, F. Sarioglu, and N. Aksoz, Corrosion of Drilling Pipe Steel in an Environment Containing Sulphate-Reducing Bacteria, Int. J. Press. Vessels Pip., 1997, 73, p 127–131

    Article  Google Scholar 

  9. S.E. Coster and T.E. Cloete, Biofouling and Biocorrosion in Industrial Water Systems, Crit. Rev. Microbiol., 2005, 31, p 213–232

    Article  Google Scholar 

  10. R. Toress-Sanchez, A. Magana-Vazuez, and J.M. Sanchez-Yanez, High Temperature Microbial Corrosion in the Condenser of a Geothermal Electric Power Unit, Mater. Perform., 1997, 36, p 43–46

    Google Scholar 

  11. R. Alfaro-Cuevas-Villanueva, R. Cortes-Martinez, J.J. García-Díaz, R. Galvan-Martinez, and R. Torres-Sanchez, Microbiologically Influenced Corrosion of Steels by Thermophilic and Mesophilic Bacteria, Mater. Corros., 2006, 57, p 543–548

    Article  CAS  Google Scholar 

  12. H. El Hajj, A. Abdelouas, B. Grambow, C. Martin, and M. Dion, Microbial Corrosion of P235GH Steel Under Geological Condition, Phys. Chem. Earth, 2010, 35, p 248–253

    Article  Google Scholar 

  13. D. Çetin, S. Bilgiç, S. Dönmez, and G. Dönmez, Determination of Biocorrosion of Low Alloy Steel by Sulfate-Reducing Desulfotomaculum sp. Isolated from Crude Oil Field, Mater. Corros., 2007, 58, p 84–847

    Article  Google Scholar 

  14. D. Çetin, S. Bilgiç, and G. Dönmez, Biocorrosion of Low Alloy Steel by Desulfotomaculum sp. and Effect of Biocides on Corrosion Control, ISIJ Int., 2007, 47, p 1023–1028

    Article  Google Scholar 

  15. B. Anandkumar, J.H. Choi, G. Venkatachari, and S. Maruthamuthu, Molecular Characterization and Corrosion Behavior of Thermophilic (55°C) SRB Desulfotomaculum kuznetsovii Isolated from Cooling Tower in Petroleum Refinery, Mater. Corros., 2009, 60, p 730–737

    Article  CAS  Google Scholar 

  16. X. Sheng, Y. Peng Ting, and S.O. Pehkonen, The Influence of Sulphate-Reducing Bacteria Biofilm on the Corrosion of Stainless Steel AISI, 316, Corros. Sci., 2007, 49, p 2159–2176

    Article  CAS  Google Scholar 

  17. C.C. Gaylarde, Sulphate-Reducing Bacteria Which do not Induce Accelerated Corrosion, Int. Biodeterior. Biodegrad., 1992, 30, p 331–338

    Article  CAS  Google Scholar 

  18. I.B. Beech, W.C. Cheung Sunny, S.C. Chan Patric, A.M. Hill, R. Franco, and R.A. Lino, Study of Parameters Implicated in Biodeterioration of Steel in the Presence of Different Species of Sulphate-Reducing Bacteria, Int. Biodeterior. Biodegrad., 1994, 34, p 289–303

    Article  CAS  Google Scholar 

  19. P.J. Antony, S. Chonmdar, P. Kumar, and R. Raman, Corrosion of 2205 Duplex Stainless Steel in Chloride Medium Containing Sulfate-Reducing Bacteria, Electrochim. Acta, 2007, 52, p 3985–3994

    Article  CAS  Google Scholar 

  20. E.I. Sungur, N. Cansever, and A. Cotuk, Microbial Corrosion of Galvanized Steel by a Freshwater Strain of Sulphate Reducing Bacteria (Desulfovibrio sp.), Corros. Sci., 2007, 49, p 1097–1109

    Article  Google Scholar 

  21. A.L. De Lacey, C. Stadler, C. Cavazza, E.C. Hatchikian, and V.M. Fernandez, FTIR Characterization of the Active Site of the Fe-Hydrogenase from Desulfovibrio desulfuricans, J. Am. Chem. Soc., 2000, 122, p 11232–11233

    Article  Google Scholar 

  22. K.J. Rashamuse, “The Bioaccumulation of Platinum (IV) from Aqueous Solution Using Sulphate Reducing Bacteria—Role of a Hydrogenase Enzyme,” M.Sc. Thesis, Rhodes University, South Africa, 2003

  23. “ASTM Standard, Wear and Erosion,” Metal Corrosion 3(02), 1991

  24. H.J.M. Gayosso, Z.G. Olivares, R.N. Ordaz, J.C. Ramirez, G.R. Esquivel, and P.A. Viveros, Microbial Consortium Influence upon Steel Corrosion Rate, Using Polarization Resistance and Electrochemical Noise Techniques, Electrochim. Acta, 2004, 49, p 4295–4301

    Article  Google Scholar 

  25. H. Liu and H.H.P. Fang, Extraction of Extracellular Polymeric Substances (EPS) of Sludges, J. Biotechnol., 2002, 95, p 249–256

    Article  CAS  Google Scholar 

  26. A. Nigam, Lab Manual in Biochemistry, Immunology and Biotechnology, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2007

    Google Scholar 

  27. K. Mojica, D. Elsey, and M.J. Cooney, Quantitative Analysis of Biofilm EPS Uronic Acid Content, J. Microbiol. Methods, 2007, 71, p 61–65

    Article  CAS  Google Scholar 

  28. E.G. Bligh and W.J. Dyer, A Rapid Method of Total Lipid Extraction and Purification, Biochem. Physiol., 1959, 37, p 911–917

    Article  CAS  Google Scholar 

  29. G. Rouser, S. Fleischer, and A. Yamamoto, Two Dimensional Thin Layer Chromatography Separation of Polar Lipid and Determination of Phospholipids by Phosphorous Analysis of Spots, Lipid, 1970, 5, p 494–496

    Article  CAS  Google Scholar 

  30. A.D. Karkhanis, J.Y. Zeltner, and D.J.C. Carlo, A New and Improved Microassay to Determine 2-keto-3-deoxyoctonate in Lipopolysaccharide of Gram-Negative Bacteria, Anal. Biochem., 1978, 85, p 595–601

    Article  CAS  Google Scholar 

  31. C.D. Ellwood, W.C. Keevil, D.P. Marsh, M.C. Brown, and N.J. Wardell, Surface-Associated Growth, Philos. Trans. R. Soc. B., 1982, 297, p 517–532

    Article  CAS  Google Scholar 

  32. K.Y. Chan, L.-C. Xu, and H.H.P. Fang, Anaerobic Electrochemical Corrosion of Mild Steel in the Presence of Extracellular Polymeric Substances Produced by a Culture Enriched in Sulfate-Reducing Bacteria, Environ. Sci. Technol., 2002, 36, p 1720–1727

    Article  CAS  Google Scholar 

  33. V. Zinkevich, I. Bogdarina, H. Kang, W.A.M. Hill, R. Tapper, and I.B. Beech, Characterisation of Exopolymers Produced by Different Isolates of Marine Sulphate-Reducing Bacteria, Int. Biodeterior. Biodegrad., 1996, 37, p 163–172

    Article  CAS  Google Scholar 

  34. D.S. Silva, R. Basseguy, and A. Bergel, Electron Transfer Between Hydrogenase and 316L Stainless Steel: Identification of a Hydrogenase-Catalyzed Cathodic Reaction in Anaerobic MIC, J. Electroanal. Chem., 2004, 561, p 93–102

    Article  Google Scholar 

  35. X. Zhang and L.P. Bishop, Biodegradability of Biofilm Extracellular Polymeric Substances, Chemosphere, 2003, 50, p 63–69

    Article  CAS  Google Scholar 

  36. I.B. Beech and S.W.C. Cheung, Interactions of Exopolymers Produced by Sulphate Reducing Bacteria with Metal Ions, Int. Biodeterior. Biodegrad., 1995, 35, p 9–72

    Google Scholar 

  37. I.B. Beech, V. Zinkevich, R. Tapper, R. Gubner, and R. Avci, Study of the Interaction of Sulphate-Reducing Bacteria Exopolymers with Iron using X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ionisation Mass Spectrometry, J. Microbiol. Methods, 1999, 36, p 3–10

    Article  CAS  Google Scholar 

  38. H.H.P. Fang, L.C. Xua, and K.Y. Chan, Effects of Toxic Metals and Chemicals on Biofilm and Biocorrosion, Water Res., 2002, 36, p 4709–4716

    Article  CAS  Google Scholar 

  39. V.W. Kueher and I.S.V.D. Vlugt, Graphitization of Cast Iron an Electrochemical Process in Anaerobic Soil, Water, 1934, 18, p 147–165

    Google Scholar 

  40. R.S. Poulsion, S.J.P. Colbergb, and I.J. Drever, Toxicity of Heavy Metals (Ni, Zn) to Desulfovibrio desulfuricans, Geomicrobiol. J., 1997, 14, p 41–49

    Article  Google Scholar 

  41. http://en.wikipedia.org/wiki/Hydrogenase

  42. H. Cypionka and W. Dilling, Intracellular Localization of the Hydrogenase in Desulfotomaculum orientis, FEMS Microbiol. Lett., 1986, 36, p 257–260

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay K. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lata, S., Sharma, C. & Singh, A.K. Comparison of Biocorrosion due to Desulfovibrio desulfuricans and Desulfotomaculum nigrificans Bacteria. J. of Materi Eng and Perform 22, 463–469 (2013). https://doi.org/10.1007/s11665-012-0283-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0283-3

Keywords

Navigation