Skip to main content
Log in

Defects Characterization of HgCdTe and CdZnTe Compounds by Positron Annihilation Spectroscopy

  • 2021 U.S. Workshop on Physics and Chemistry of II-VI Materials
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Infrared cooled photodetectors must operate at higher temperatures to reduce their size, weight and power consumption (SWaP context). Their stability and image quality are then challenged by extra electrical activity of crystal defects. Knowledge of defect populations is mandatory to improve the material quality of the epitaxial Hg1−xCdxTe (MCT) active layer and the Cd1−xZnxTe (CZT) substrate. Positron annihilation spectroscopy with a slow positron beam was used to study near-surface open-volume defects profiles. Low- and high-momentum fractions (\(S\),\( W\)) were used to characterize the Doppler broadening of the 511 keV electron-positron pair annihilation-line as a function of the positron implantation energy \(E\). The results show that three regions can be identified beneath the surface of the as-grown non-optimized MCT layer. The quasi-linear relationship between the annihilation characteristics in the regions suggests that the defect populations mainly correspond to the same open-volume defect in different concentrations. The probed defect is thought to be related to the mercury vacancy. This hypothesis is discussed in an original way with near-surface elemental profiles using scanning transmission electron spectroscopy combined to energy dispersive x-ray spectroscopy (STEM-EDX). Afterwards, this approach is extended to CZT substrates showing that surface and bulk properties of those fabricated by LYNRED tend to match those that are state-of-the-art. A common open-volume defect is probed, in concentration estimated by Hall effect around 1015 cm−3 and thought to be related to the cadmium vacancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5.
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Krause-Rehberg and H.S. Leipner, Positron Annihilation in Semiconductors: Defect Studies, 1st ed., (Berlin Heidelberg: Springer-Verlag, 1999).

    Book  Google Scholar 

  2. P. Hautojärvi, Positrons in Solids, 1st ed., (Berlin Heidelberg: Springer-Verlag, 1979).

    Book  Google Scholar 

  3. F. Tuomisto and I. Makkonen, Rev. Mod. Phys. 85, 4 (2013).

    Article  Google Scholar 

  4. B. Pelliciari, Prog. Cryst. Growth Charact. Mater 29, 1 (1994).

    Article  CAS  Google Scholar 

  5. B. Pelliciari, J.P. Chamonal, G.L. Destefanis, and L. Dicioccio, In: Focal Plane Arrays: Technology and Applications, Proc. SPIE 0865 (1988)

  6. D. Brellier, E. Gout, G. Gaude, D. Pelenc, P. Ballet, T. Miguet, and M.C. Manzato, J. Electron. Mater. 43, 2901 (2014).

    Article  CAS  Google Scholar 

  7. P. Desgardin, L. Liszkay, M.F. Barthe, L. Henry, J. Briaud, M. Saillard, L. Lepolotec, C. Corbel, G. Blondiaux, A. Colder, P. Marie, and M. Levalois, Mater. Sci. Forum 363 (2001). https://doi.org/10.4028/www.scientific.net/MSF.363-365.523.

  8. A. van Veen, H. Schut, J. de Vries, R.A. Hakvoort, and M.R. Ijpma, In: AIP Conference Proceedings 218 (1991), p. 171

  9. A. van Veen, H. Schut, M. Clement, J.M.M. de Nijs, A. Kruseman, and M.R. Ijpma, Appl. Surf. Sci. 85, 216 (1995).

    Article  Google Scholar 

  10. P. Capper, Properties of Narrow Gap Cadmium-Based Compounds, 1st ed., (UK: INSPEC, 1994).

    Google Scholar 

  11. S. Mantl and W. Triftshäuser, Phys. Rev. B 17, 4 (1978).

    Article  Google Scholar 

  12. L. Liszkay, C. Corbel, L. Baroux, P. Hautojärvi, M. Bayhan, A.W. Brinkman, and S. Tatarenko, Appl. Phys. Lett. 64, 11 (1994).

    Article  Google Scholar 

  13. L. Liszkay, C. Corbel, L. Baroux, P. Hautojärvi, A. Declemy, and P.O. Renault, J. Phys. Condens. Matter 7, 45 (1995).

    Article  Google Scholar 

  14. M. Hakala, M.J. Puska, and R.M. Nieminen, Phys. Rev. B 57, 13 (1998).

    Article  Google Scholar 

  15. C. Gely, C. Corbel, and R. Triboulet, J. Phys. Condens. Matter 2, 21 (1990).

    Article  Google Scholar 

  16. R. Krause, A. Klimakow, F.M. Kiessling, A. Polity, P. Gille, and M. Schenk, J. Cryst. Growth 101, 1 (1990).

    Article  Google Scholar 

  17. L. Baroux, C. Corbel, F.M. Kiessling, S. Rolland, R. Granger, W. Hoerstel, and R. Triboulet, Phys. Rev. Lett. 75, 3 (1995).

    Article  Google Scholar 

  18. C. Smith, P.C. Rice-Evans, N. Shaw, and D.L. Smith, J. Phys. Condens. Matter 4, 26 (1992).

    Google Scholar 

  19. C. Smith, P. Rice-Evans, N. Shaw, and D.L. Smith, Phil. Mag. Lett. 67, 3 (1993).

    Article  Google Scholar 

  20. C.D. Smith, P. Rice-Evans, and N. Shaw, Phys. Rev. Lett. 72, 7 (1994).

    Google Scholar 

  21. P. Capper and J. Garland, Mercury Cadmium Telluride: Growth, Properties and Applications, 1st ed., (Chichester: Wiley, 2010).

    Book  Google Scholar 

  22. M. Gorgol, R. Zaleski, A. Kierys, D. Kamiński, K. Strzałkowski, and K. Fedus, Acta Cryst. B 77, 4 (2021).

    Article  Google Scholar 

  23. M.A. Berding, Phys. Rev. B 60, 12 (1999).

    Article  Google Scholar 

  24. B. Geffroy, C. Corbel, and M. Stucky, Mater. Sci. Forum 10–12, 1241 (1986).

    Article  Google Scholar 

  25. C. Corbel, L. Baroux, F.M. Kiessling, C. Gély-sykes, and R. Triboulet, Mater. Sci. Eng. B 16, 1 (1993).

    Article  Google Scholar 

  26. D.J. Keeble, J.D. Major, L. Ravelli, W. Egger, and K. Durose, Phys. Rev. B 84, 17 (2011).

    Article  Google Scholar 

  27. G. Tessaro and P. Mascher, J. Cryst. Growth 197, 3 (1999).

    Article  Google Scholar 

  28. M. Martyniuk and P. Mascher, Physica B Condens. Matter. 308–310, 924 (2001).

    Article  Google Scholar 

  29. L. Šedivý, J. Čížek, E. Belas, R. Grill, and O. Melikhova, Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  30. H. Kauppinen, L. Baroux, K. Saarinen, C. Corbel, and P. Hautojärvi, J. Phys.: Condens. Matter 9, 25 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Léger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Léger, V., Desgardin, P., Destefanis, V. et al. Defects Characterization of HgCdTe and CdZnTe Compounds by Positron Annihilation Spectroscopy. J. Electron. Mater. 51, 4659–4665 (2022). https://doi.org/10.1007/s11664-022-09801-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09801-6

Keywords

Navigation