Skip to main content
Log in

Mechanisms of Two-Stage Conductivity Relaxation in CdTe:Cl with Ultrasound

  • Topical Collection: 19th International Conference on II-VI Compounds
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have investigated the kinetics of acoustic relaxation in low-ohmic n-CdTe:Cl crystals in the temperature range 77–200 K when ultrasound (longitudinal waves with a frequency ∼  10 MHz and an intensity  ∼ 104 W/m2) was switched on/off. We found that acoustic conductivity relaxation occurs in two stages. A fast (< 0.6 s) relaxation stage is mainly related to the charge carrier concentration changes and, in part, can be determined by acoustically induced changes of the scattering at dislocations and neutral impurities. A long (> 100 s) stage is mainly caused by the charge carriers mobility changes due to scattering at ionized impurities. We have also discussed possible acoustically stimulated restructuring of point-defective complexes in adjacent crystal regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.I. Vlasenko, Ya.M. Olikh, and R.K. Savkina, Semiconductors 33, 398 (1999). https://doi.org/10.1134/1.1187701.

    Article  CAS  Google Scholar 

  2. V. Babentsov, S.I. Gorban, I.Ya. Gorodetskiy, N.E. Korsunskaya, I.M. Rarenko, and M.K. Sheinkman, Sov. Phys. Semicond. 25, 1243 (1991).

    CAS  Google Scholar 

  3. O.Ya. Olikh, Superlattices Microstruct. 117, 173 (2018). https://doi.org/10.1016/j.spmi.2018.03.027.

    Article  CAS  Google Scholar 

  4. D.V. Korbutyak, S.W. Mel’nychuk, E.V. Korbut, and M.M. Borysyk, Cadmium Telluride: Impurity-Defect States and Detector Properties (Kyiv: Ivan Fedorov, 2000) (in Ukrainian).

  5. I. Turkevych, R. Grill, J. Franc, E. Belas, P. Hoschl, and P. Moravec, Semicond. Sci. Technol. 17, 1064 (2002). https://doi.org/10.1088/0268-1242/17/10/305.

    Article  CAS  Google Scholar 

  6. A.I. Vlasenko, Ya.M. Olikh, and R.K. Savkina, Ukr. J. Fiz. 44, 618 (1999).

    CAS  Google Scholar 

  7. Ya.M. Olikh and M.D. Tymochko, Tech. Phys. Lett. 37, 37 (2011). https://doi.org/10.1134/S106378501101007X.

    Article  CAS  Google Scholar 

  8. Ya.M. Olikh and M.D. Tymochko, Superlattices Microstruct. 95, 78 (2016). https://doi.org/10.1016/j.spmi.2016.04.038.

    Article  CAS  Google Scholar 

  9. Ya.M. Olikh, M.D. Tymochko, O.Ya. Olikh, and V.A. Shenderovsky, J. Electron. Mater. 47, 4370 (2018). https://doi.org/10.1007/s11664-018-6332-4.

    Article  CAS  Google Scholar 

  10. M.I. Ilashchuk, A.A. Parfenyuk, and K.S. Ulyanitskyi, Ukr. J. Fiz. 31, 126 (1986).

    CAS  Google Scholar 

  11. I.P. Golyamina, eds., Ultrasound. The Small Encyclopedia (Moscow: Soviet Encyclopedia, 1979) (in Russian).

    Google Scholar 

  12. O.Ya. Olikh, J. Appl. Phys. 118, 024502 (2015).

    Article  Google Scholar 

  13. M.K. Sheinkman and A.Ya. Shik, Sov. Phys. Semicond. 10, 209 (1976).

    CAS  Google Scholar 

  14. A.A. Ronassi and A.K. Fedotov. Vestnik BGU, Seriya 1. No. 2. 8 (2010).

  15. B.N. Mukashev, KhA Abdullin, and YuV Gorelkinskii, Phys. Usp. 43, 139 (2000).

    Article  CAS  Google Scholar 

  16. T. Thio, J.W. Bennett, D.J. Chadi, and R.A. Linke, Becla P (1996). J. Cryst. Growth 159, 345 (1996). https://doi.org/10.1016/0022-0248(95)00681-8.

    Article  CAS  Google Scholar 

  17. YuA Osipyan, eds., Electronic Properties of Dislocations in Semiconductors (Moscow: Editorial URSS, 2000) (in Russian).

    Google Scholar 

  18. N.A. Tyapunina, G.V. Bushueva, G.M. Zinenkova, E.K. Naimi, and S.S. Novikov, Crystallogr. Rep. 55, 77 (2010). https://doi.org/10.1134/S106377451001013X.

    Article  CAS  Google Scholar 

  19. V.N. Pavlovich, Phys. Status Solidi B 180, 97 (1993).

    Article  Google Scholar 

  20. O.Ya Olikh and I.V. Ostrovsky, Fiz. Tverd. Tela. 44, 1198 (2002).

    Google Scholar 

  21. V.L. Bonch-Bruevich and S.G. Kalashnikov, Semiconductor Physics (Moscow: Nauka, 1977) (in Russian).

    Google Scholar 

  22. E.V. Kuchis, Galvanomagnetic Effects and Investigation Methods (Moscow: Radio i svjaz’, 1990) (in Russian).

    Google Scholar 

  23. M.V. Alekseenko, E.N. Arkadyeva, and A.A. Matveev, Sov. Phys. Semicond. 4, 349 (1970).

    Google Scholar 

  24. B.I. Shklovskii and A.L. Efros, Electronic Properties of Doped Semiconductors (Berlin: Springer, 1984).

    Book  Google Scholar 

  25. G.V. Bushueva, G.M. Zinenkova, N.A. Tyapunina, V.T. Degtyarev, AYu Losev, and F.A. Plotnikov, Crystallogr. Rep. 53, 474 (2008). https://doi.org/10.1134/S1063774508030152.

    Article  CAS  Google Scholar 

  26. T. Suzuki, S.Takeuchi, and H. Yoshinaga, Dislocation Dynamics and Plasticity (Moscow: Mir, 1989) (in Russian).

    Google Scholar 

  27. V.L. Gromashevskyi, V.V. Dyakin, E.A. Sal’kov, S.M. Sklyarov, and N.S. Khilimova, Ukr. J. Fiz. 29, 550 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya. Olikh or M. Tymochko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olikh, Y., Tymochko, M. & Olikh, O. Mechanisms of Two-Stage Conductivity Relaxation in CdTe:Cl with Ultrasound. J. Electron. Mater. 49, 4524–4530 (2020). https://doi.org/10.1007/s11664-020-08179-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08179-7

Keywords

Navigation