Skip to main content
Log in

Design of a Surface Plasmon Resonance-Enhanced ZnO Ultraviolet Photodetector Based on a Sub-wavelength Metal Grating Covered with a High-Refractive-Index Medium

  • Topical Collection: 19th International Conference on II-VI Compounds
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To realize a surface plasmon resonance-enhanced zinc oxide (ZnO) ultraviolet photodetector based on a sub-wavelength metal grating, we take advantage of the sensitivity of the resonance condition of a sub-wavelength metal grating to the refractive index of the surrounding medium. We theoretically design a sub-wavelength Ag grating covered with a high-refractive-index medium layer and apply it to a ZnO ultraviolet photodetector. By optimizing the parameters (angle of incidence, grating period, grating spacing, grating thickness, high-refractive-index medium layer thickness, refractive index of the covering), the optical field is localized at the interface of the sub-wavelength Ag grating and the ZnO thin film; that is, surface plasmon resonance is realized within the device. Compared with the device without a high-refractive-index medium layer, the maximum absorption enhancement factor of the designed device can reach up to 108. This work will provide theoretical guidance to realize a surface plasmon resonance-enhanced ZnO ultraviolet photodetector with a sub-wavelength metal grating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.W. Liu, M. Sakurai, and M. Aono, Sensors 10, 8604 (2010).

    Article  CAS  Google Scholar 

  2. J. Yu, C.X. Shan, Q. Qiao, X.H. Xie, S.P. Wang, Z.Z. Zhang, and D.Z. Shen, Sensors 12, 1280 (2012).

    Article  CAS  Google Scholar 

  3. H.Y. Chen, K.W. Liu, X. Chen, Z.Z. Zhang, M.M. Fan, M.M. Jiang, X.H. Xie, H.F. Zhao, and D.Z. Shen, J. Mater. Chem. C 2, 9689 (2014).

    Article  CAS  Google Scholar 

  4. P.N. Ni, C.X. Shan, S.P. Wang, B.H. Li, Z.Z. Zhang, D.X. Zhao, L. Liu, and D.Z. Shen, J. Phys. Chem. C 116, 1350 (2012).

    Article  CAS  Google Scholar 

  5. P.N. Ni, C.X. Shan, S.P. Wang, X.Y. Liu, and D.Z. Shen, J. Mater. Chem. C 1, 4445 (2013).

    Article  CAS  Google Scholar 

  6. H.Y. Chen, H. Liu, Z.M. Zhang, K. Hu, and X.S. Fang, Adv. Mater. 28, 403 (2016).

    Article  Google Scholar 

  7. K.W. Liu, M. Sakurai, M.Y. Liao, and M. Aono, J. Phys. Chem. C 114, 19835 (2010).

    Article  CAS  Google Scholar 

  8. J. Yu, C.X. Shan, X.M. Huang, X.W. Zhang, S.P. Wang, and D.Z. Shen, J. Phys. D Appl. Phys. 46, 305105 (2013).

    Article  Google Scholar 

  9. J.S. Liu, C.X. Shan, B.H. Li, Z.Z. Zhang, C.L. Yang, D.Z. Shen, and X.W. Fan, Appl. Phys. Lett. 97, 251102 (2010).

    Article  Google Scholar 

  10. J. Yu and N. Tian, Phys. Chem. Chem. Phys. 18, 24129 (2016).

    Article  CAS  Google Scholar 

  11. H.Y. Chen, L.X. Su, M.M. Jiang, and X.S. Fang, Adv. Funct. Mater. 27, 1704181 (2017).

    Article  Google Scholar 

  12. J. Hetterich, G. Bastian, N.A. Gippius, S.G. Tikhodeev, G.V. Plessen, and U. Lemmer, IEEE. J. Quantum. Elect. 43, 855 (2007).

    Article  CAS  Google Scholar 

  13. F.F. Ren, K.W. Ang, J.F. Song, Q. Fang, and M.B. Yu, Appl. Phys. Lett. 97, 091102 (2010).

    Article  Google Scholar 

  14. J. Qiao, S. Xie, L.H. Mao, J. Cong, and W.F. Dong, Chin. J. Lumin. 39, 363 (2018).

    Article  Google Scholar 

  15. H.Y. Chen, K.W. Liu, M.M. Jiang, Z.Z. Zhang, L. Liu, B.H. Li, X.H. Xie, F. Wang, D.X. Zhao, C.X. Shan, and D.Z. Shen, J. Phys. Chem. C 118, 679 (2014).

    Article  CAS  Google Scholar 

  16. H.Y. Chen, K.W. Liu, M.M. Jiang, Z.Z. Zhang, X.H. Xie, D.K. Wang, L. Liu, B.H. Li, D.X. Zhao, C.X. Shan, and D.Z. Shen, Appl. Phys. Lett. 104, 091119 (2014).

    Article  Google Scholar 

  17. W. Su, G.G. Zheng, and X.Y. Li, Opt. Commun. 285, 4603 (2012).

    Article  CAS  Google Scholar 

  18. J.H. Lin, Y.J. Chen, H.Y. Lin, and W.F. Hsieh, J. Appl. Phys. 97, 033526 (2005).

    Article  Google Scholar 

  19. F.F. Masouleh, N. Das, and H.R. Mashayekhi, Opt. Quant. Electron. 47, 193 (2015).

    Article  CAS  Google Scholar 

  20. C.L. Tan, V.V. Lysak, K. Alameh, and Y.T. Lee, Opt. Commun. 283, 1763 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (no. 11804235) and the Major Incubation Project of Shenyang Normal University (51700303). We thank Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Men, HJ., Zhang, JW. et al. Design of a Surface Plasmon Resonance-Enhanced ZnO Ultraviolet Photodetector Based on a Sub-wavelength Metal Grating Covered with a High-Refractive-Index Medium. J. Electron. Mater. 49, 4469–4473 (2020). https://doi.org/10.1007/s11664-020-08003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08003-2

Keywords

Navigation