Skip to main content
Log in

Characterization of Epitaxial β-(Al,Ga,In)2O3-Based Films and Applications as UV Photodetectors

  • Topical Collection: 61st Electronic Materials Conference 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Epitaxial films of β-(AlxGa1−x)2O3, β-Ga2O3, and β-(InxGa1−x)2O3 were grown on (001) sapphire substrates via metalorganic chemical vapor deposition (MOCVD). The compositions of the films as determined from energy dispersive x-ray analysis (EDX) and x-ray photoelectron spectroscopy (XPS) results were XAl = 0.57 ± 0.05 and 0.76 ± 0.05 and XIn = 0.12 ± 0.05 and 0.21 ± 0.05. The optical bandgap was found to correspondingly vary between 6.0 ± 0.2 and 3.9 ± 0.1 eV, as a function of composition via XPS and UV–visible spectroscopy (UV–Vis). X-ray diffraction, scanning electron microscopy, and atomic force microscopy revealed the films to be highly-oriented \( \left( {\bar{2}01} \right) \)-epitaxial films with nanocrystalline domains. Schottky- and MSM-based solar-blind UV photodetectors were fabricated on the films and showed responsivities at 20 V varying from > 104 A/W for the Ga2O3 devices, > 103 A/W for the (AlxGa1−x)2O3 devices and > 102 A/W for the (InxGa1−x)2O3 devices. Modest shifts in wavelength selectivity corresponding with the changes in composition/bandgap were also measured. Time response measurements on Schottky and MSM detectors reveal rise and dwell times on the order of a minute, indicating the presence of photoconductive gain. Noise-equivalent powers were in the fW–pW regime with specific detectivities (\( D^{*} \)) between 1010 and 1012 Jones. Scanning photocurrent maps display large photocurrent generation at the Schottky interface in the case of a β-Ga2O3 Schottky detector, whereas for an β-(InxGa1−x)2O3 MSM detector the photocurrent generation occurs in the device channel and at the Schottky interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Shimamura, E.G. Villora, K. Muramatu, K. Aoki, M. Nakamura, N. Ichinose, and K. Kitamura, J. Jpn. Assoc. Cryst. 33, 147 (2006).

    Google Scholar 

  2. J. Zhang, C. Xia, Q. Deng, W. Xu, H. Shi, F. Wu, and J. Xu, J. Phys. Chem. Solids 67, 1656 (2006).

    Article  CAS  Google Scholar 

  3. G. Garton, S.H. Smith, and B.M. Wanklyn, J. Cryst. 13/14, 588 (1972).

    Article  Google Scholar 

  4. Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, J. Cryst. 220, 510 (2000).

    Article  CAS  Google Scholar 

  5. X. Wang, Z. Chen, F. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q. Guo, Ceram. Int. 42, 12783 (2016).

    Article  CAS  Google Scholar 

  6. X. Wang, Z. Chen, F. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q. Guo, AIP Adv. 6, 1 (2016).

    Google Scholar 

  7. S. Fujita and K. Kaneko, J. Cryst. 401, 588 (2014).

    Article  CAS  Google Scholar 

  8. J. Tauc, Mater. Res. Bull. 3, 37 (1968).

    Article  CAS  Google Scholar 

  9. F. Zhang, K. Saito, T. Tanaka, M. Nishio, M. Arita, and Q. Guo, Appl. Phys. Lett. 105, 1 (2014).

    Google Scholar 

  10. Y. Yao, L.A.M. Lyle, J.A. Rokholt, S. Okur, G.A. Tompa, T. Salagaj, N. Sbrockey, R.F. Davis, and L.M. Porter, ECS Trans. 80, 191 (2017).

    Article  CAS  Google Scholar 

  11. Y. Yao, S. Okur, L.A.M. Lyle, G.S. Tompa, T. Salagaj, N. Sbrockey, R.F. Davis, and L.M. Porter, Mater. Res. Lett. 6, 268 (2018).

    Article  CAS  Google Scholar 

  12. Y. Oshima, E. Ahmadi, S.C. Badescu, F. Wu, and J.S. Speck, Appl. Phys. Express 9, 6 (2016).

    Article  Google Scholar 

  13. F. Yang, J. Ma, C. Luan, and L. Kong, Appl. Surf. Sci. 255, 4401 (2009).

    Article  CAS  Google Scholar 

  14. W.Y. Weng, T.J. Hsueh, S.J. Chang, S.C. Hung, G.J. Huang, H.T. Hsueh, Z.D. Huang, and C.J. Chiu, IEEE Sens. J. 11, 1795 (2011).

    Article  CAS  Google Scholar 

  15. F. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q. Guo, Solid State Commun. 186, 28 (2014).

    Article  CAS  Google Scholar 

  16. Q. Feng, X. Li, G. Han, L. Huang, F. Li, W. Tang, J. Zhang, and Y. Hao, Opt. Mater. Express 7, 4 (2017).

    Google Scholar 

  17. F. Zhang, H. Li, M. Arita, and Q. Guo, Opt. Mater. Express 7, 10 (2017).

    Google Scholar 

  18. K. Zhang, Q. Feng, L. Huang, Z. Hu, Z. Feng, A. Li, H. Zhou, X. Lu, C. Zhang, J. Zhang, and Y. Hao, IEEE Photon. J. 10, 1 (2018).

    Google Scholar 

  19. A.M. Armstrong, M.H. Crawford, A. Jayawardena, A. Ahyi, and S. Dhar, J. Appl. Phys. 119, 1 (2016).

    Article  Google Scholar 

  20. X.C. Yang Xu, D. Zhou, F. Ren, J. Zhou, S. Bai, H. Lu, S. Gu, R. Zhang, Y. Zheng, and J. Ye, IEEE Trans. Electron Devices 66, 5 (2019).

    Google Scholar 

  21. A.S. Pratiyush, S. Krishnamoorthy, S. Vishnu Solanke, Z. Xia, R. Muralidharan, S. Rajan, and D.N. Nath, Appl. Phys. Lett. 110, 1 (2017).

    Google Scholar 

  22. R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai, and S. Ohira, Appl. Phys. Lett. 94, 1 (2009).

    Google Scholar 

  23. M. Kim, H.-C. Huang, J.D. Kim, K.D. Chabak, A.R.K. Kalapala, W. Zhou, and X. Li, Appl. Phys. Lett. 113, 1 (2018).

    Google Scholar 

  24. B.R. Tak, M. Garg, S. Dewan, C.G. Torres-Castanedo, K.-H. Li, V. Gupta, X. Li, and R. Singh, J. Appl. Phys. 125, 1 (2019).

    Article  Google Scholar 

  25. Z.-M. Liao, K.-J. Liu, J.-M. Zhang, J. Xu, and D.-P. Yu, Phys. Lett. A 367, 207 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support from the following sources: Department of Energy (DOE Contract # DE-SC0017885), National Science Foundation (Award # ECCS-1642740, supervised by Dr. Nadia El Masry and Dr. Paul Lane; and Award # ECCS-1711322, supervised by Dr. Paul Lane), and Army Research Office (program manager Michael Gerhold). The authors would like to acknowledge support from the University of South Carolina through the ASPIRE program. MLK acknowledges support from an NSF IGERT fellowship (Award #1250052). We’d like to thank Phillip Jean-Remy for helpful discussions regarding XPS analysis and Joshua Letton for his help measuring the devices at the University of South Carolina. We’d also like to thank Priscilla Chung for help with the AFM characterizations. Use of the Materials Characterization Facility at Carnegie Mellon University was supported by Grant MCF-677785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke A. M. Lyle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyle, L.A.M., Okur, S., Chava, V.S.N. et al. Characterization of Epitaxial β-(Al,Ga,In)2O3-Based Films and Applications as UV Photodetectors. J. Electron. Mater. 49, 3490–3498 (2020). https://doi.org/10.1007/s11664-020-07985-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07985-3

Keywords

Navigation