Skip to main content
Log in

Ray Tracing Simulation of Images of Dislocations and Inclusions on X-Ray Topographs of GaAs Epitaxial Wafers

  • Topical Collection: 61st Electronic Materials Conference 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In x-ray topography studies, ray tracing simulation has been particularly useful in identifying and characterizing Burgers vectors of dislocations using only one reflection instead of the traditional method of recording at least three reflections and applying \(\vec{g} \cdot \vec{b} = 0\) and \(\vec{g} \cdot \vec{b} \times \vec{l} = 0\) criteria. In this study, ray tracing simulation of expected dislocations in (AlxGa(1–x))0.5In0.5P epitaxial layers on GaAs substrates has been carried out by using well-known expressions for displacement fields around dislocations. By comparing the simulated images with observed images on monochromatic x-ray topographs, the Burgers vectors have been characterized. The x-ray topographs from the (AlxGa(1–x))0.5In0.5P epitaxial layers also reveal a unique pattern consisting of a series of circular dark contrast features from inclusions. These dark circles decrease in size as the center of the inclusions is approached. Ray tracing simulated image of an inclusion assuming a spherical strain field matches well with the experimental image, thus providing information on the level of strain around the inclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Th Gessmann and E.F. Schubert, J. Appl. Phys. 95, 5 (2004).

    Article  Google Scholar 

  2. C.H. Chen, S.A. Stockman, M.J. Peanasky, and C.P. Kuo, Semiconduct. Semimet. 48, 97 (1997).

    Article  CAS  Google Scholar 

  3. M. Dudley, X.R. Huang, and W. Vetter, J. Phys. D Appl. Phys. 36, A30 (2003).

    Article  CAS  Google Scholar 

  4. R. Dalmau, H.S. Craft, J. Britt, E. Paisley, B. Moody, J.Q. Guo, Y. Ji, B. Raghothamachar, M. Dudley, and R. Schlesser, Mater. Sci. Forum 924, 923 (2018).

    Article  Google Scholar 

  5. T. Zhou, B. Raghothamachar, F. Wu, R. Dalmau, B. Moody, S. Craft, R. Schlesser, M. Dudley, and Z. Sitar, J. Electron. Mater. 43, 838 (2014).

    Article  CAS  Google Scholar 

  6. J.Q. Guo, Y. Yang, F.Z. Wu, J. Sumakeris, R.T. Leonard, O. Goue, B. Raghothamachar, and M. Dudley, Mater. Sci. Forum 858, 15 (2016).

    Article  Google Scholar 

  7. X.R. Huang, M. Dudley, W.M. Vetter, W. Huang, W. Sia, and C.H. Carter Jr, J. Appl. Cryst. 32, 516 (1999).

    Article  CAS  Google Scholar 

  8. N.F. Mott and F.R.N. Nabarro, Proc. Phys. Soc. 52, 86 (1940).

    Article  CAS  Google Scholar 

  9. J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (Florida: Krieger Publishing Company, 1982), pp. 59–86.

    Google Scholar 

  10. N. Miyazaki, A. Kumamoto, and C. Harada, J. Cryst. Growth 271, 358 (2004).

    Article  CAS  Google Scholar 

  11. J.W. Matthew, S. Mader, and T.B. Light, J. Appl. Phys. 41, 9 (1970).

    Google Scholar 

  12. A. Authier, Dynamical theory of x-ray diffraction (Oxford: Oxford Science Publications, 2003), pp. 355–403.

    Book  Google Scholar 

  13. B.W. Batterman and H. Cole, Rev. Mod. Phys. 36, 3 (1964).

    Article  Google Scholar 

  14. A.O. Okunev and G.A. Verozubova, J. Appl. Cryst. 48, 1228 (2015).

    Article  CAS  Google Scholar 

  15. A.O. Okunev, G.A. Verozubova, E.M. Trukhanov, I.V. Dzjuba, P.R.J. Galtierd, and S.A. SaidHassani, J. Appl. Cryst. 42, 994 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work supported by Lumileds and this research used resources of the Advanced Photon Source (Beamline 1-BM), a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The Joint Photon Sciences Institute at SBU provided partial support for travel and subsistence at the Advanced Photon Source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Ailihumaer, T., Raghothamachar, B. et al. Ray Tracing Simulation of Images of Dislocations and Inclusions on X-Ray Topographs of GaAs Epitaxial Wafers. J. Electron. Mater. 49, 3472–3480 (2020). https://doi.org/10.1007/s11664-020-07981-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-07981-7

Keywords

Navigation