Skip to main content
Log in

A Dual-Type Electrochromic Device Based on Complementary Silica/Conducting Polymers Nanocomposite Films for Excellent Cycling Stability

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

A Correction to this article was published on 08 October 2020

This article has been updated

Abstract

In this work, the silica/polyaniline (SiO2/PANI) and silica poly(3,4-ethylenedioxythiophene) (SiO2/PEDOT) core/shell composite nanoparticles were successfully synthesized by in situ chemical oxidative polymerization. The SiO2/PANI nanocomposite film was employed as the anodically coloring electrode, and the SiO2/PEDOT nanocomposite film was employed as the cathodically coloring electrode. A viscous gel electrolyte (GE) of polymethyl methacrylate (PMMA) and lithium perchlorate (LiClO4) dissolved in propylene carbonates was used in an electrochromic device (ECD). The architectural design of dual-type ECD was glass/indium tin oxide (ITO)/SiO2-PANI/GE/SiO2-PEDOT/ITO/glass. Compared with the single-type ECD based on SiO2/PANI and SiO2/PEDOT nanocomposite films, the dual-type ECD exhibited larger optical modulation, faster response speed, higher coloration efficiency and better cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 08 October 2020

    In the original article, there is an error in Fig.

References

  1. S.X. Xiong, S.S. Li, X.L. Zhang, R. Wang, R.L. Zhang, X.Q. Wang, B.H. Wu, M. Gong, and J. Chu, J. Electron. Mater. 47, 1167 (2018).

    Article  CAS  Google Scholar 

  2. J. He, S. Mukherjee, X. Zhu, L. You, B.W. Boudouris, and J. Mei, ACS Appl. Mater. Interfaces 10, 18956 (2018).

    Article  CAS  Google Scholar 

  3. R.J. Mortimer, Annu. Rev. Mater. Res. 41, 241 (2011).

    Article  CAS  Google Scholar 

  4. S.K. Deb, Appl. Opt. 8, 192 (1969).

    Article  Google Scholar 

  5. D.A. Wruck and M. Rubin, J. Electrochem. Soc. 140, 1097 (1993).

    Article  CAS  Google Scholar 

  6. S. Hoseinzadeh, R. Ghasemiasl, A. Bahari, and A.H. Ramezani, J. Electron. Mater. 47, 3552 (2018).

    Article  CAS  Google Scholar 

  7. J. Chu, D.Y. Lu, B.H. Wu, X.Q. Wang, M. Gong, R.L. Zhang, and S.X. Xiong, Sol. Energy Mater. Sol. Cells 177, 70 (2018).

    Article  CAS  Google Scholar 

  8. S. Bhadra, D. Khastgir, N.K. Singha, and J.H. Lee, Prog. Polym. Sci. 34, 783 (2009).

    Article  CAS  Google Scholar 

  9. J.X. Lu, K.S. Moon, B.K. Kim, and C.P. Wong, Polymer 48, 1510 (2007).

    Article  CAS  Google Scholar 

  10. J. Huang, S. Virji, B.H. Weiller, and R.B. Kaner, J. Am. Chem. Soc. 125, 314 (2003).

    Article  CAS  Google Scholar 

  11. A.G. Macdiarmid, L.S. Yang, W.S. Huang, and B.D. Humphrey, Synth. Met. 18, 193 (1987).

    Google Scholar 

  12. X.M. Wu, W.Z. Zhang, Q.G. Wang, Y. Wang, H.Y. Yan, and W.X. Chen, Synth. Met. 212, 1 (2016).

    Article  CAS  Google Scholar 

  13. T.S. Tung and K.C. Ho, Sol. Energy Mater. Sol. Cells 90, 521 (2006).

    Article  CAS  Google Scholar 

  14. L. Groenendaal, G. Zotti, and F. Jonas, Synth. Met. 118, 105 (2001).

    Article  CAS  Google Scholar 

  15. Q.B. Pei, G. Zuccarello, M. Ahlskog, and O. Inganas, Polymer 35, 1347 (1994).

    Article  CAS  Google Scholar 

  16. A.W. Lang, Y. Li, M. De Keersmaecker, D.E. Shen, A.M. Österholm, L. Berglund, and J.R. Reynolds, Chemsuschem 11, 807 (2018).

    Article  CAS  Google Scholar 

  17. A. Pud, N. Ogurtsov, A. Korzhenko, and G. Shapoval, Prog. Polym. Sci. 28, 1701 (2003).

    Article  CAS  Google Scholar 

  18. S.H. Zhang, R.F. Fu, S. Wang, Y.C. Gu, and S. Chen, Mater. Lett. 202, 127 (2017).

    Article  CAS  Google Scholar 

  19. Y.D. Shi, Y. Zhang, K. Tang, Y.B. Song, J.W. Cui, X. Shu, Y. Wang, J.Q. Liu, and Y.C. Wu, RSC Adv. 8, 13679 (2018).

    Article  CAS  Google Scholar 

  20. X. Fu, C. Jia, Z. Wan, X. Weng, J. Xie, and L. Deng, Org. Electron. 15, 2702 (2014).

    Article  CAS  Google Scholar 

  21. W.K. Chen, C.W. Hu, C.Y. Hsu, and K.C. Ho, Electrochim. Acta 54, 4408 (2009).

    Article  CAS  Google Scholar 

  22. S. Zhang, G. Sun, Y. He, R. Fu, Y. Gu, and S. Chen, ACS Appl. Mater. Interfaces 9, 16426 (2017).

    Article  CAS  Google Scholar 

  23. S. Zhang, Y. He, R. Fu, J. Jiang, Q. Li, Y. Gu, and S. Chen, Chem. J. Chin. Univ. 38, 1090 (2017).

    CAS  Google Scholar 

  24. G. Ciric-Marjanovic, L. Dragicevic, M. Milojevic, M. Mojovic, S. Mentus, B. Dojcinovic, B. Marjanovic, and J. Stejskal, J. Phys. Chem. B 113, 7116 (2009).

    Article  CAS  Google Scholar 

  25. M.V. Kulkarni, A.K. Viswanath, R. Marimuthu, and T. Seth, Polym. Eng. Sci. 44, 1676 (2004).

    Article  CAS  Google Scholar 

  26. N.D. Luong, J.T. Korhonen, A.J. Soininen, J. Ruokolainen, L.S. Johansson, and J. Seppala, Eur. Polym. J. 49, 335 (2013).

    Article  CAS  Google Scholar 

  27. D. Muller, R. Cercena, A.J.G. Aguayo, L.M. Porto, C.R. Rambo, and G.M.O. Barra, J. Mater. Sci. Mater. Electron. 27, 8062 (2016).

    Article  CAS  Google Scholar 

  28. J.W. Choi, M.G. Han, S.Y. Kim, S.G. Oh, and S.S. Im, Synth. Met. 114, 293 (2004).

    Article  Google Scholar 

  29. Y. Chen, Z. Bi, X. Li, X. Xu, S. Zhang, and X. Hu, Electrochim. Acta 224, 534 (2017).

    Article  CAS  Google Scholar 

  30. L. Zhao, L. Zhao, Y. Xu, T. Qiu, L. Zhi, and G. Shi, Electrochim. Acta 55, 491 (2010).

    Article  Google Scholar 

  31. G. Cai, M. Cui, V. Kumar, P. Darmawan, J. Wang, X. Wang, A.L.-S. Eh, K. Qian, and P.S. Lee, Chem. Sci. 7, 1373 (2016).

    Article  CAS  Google Scholar 

  32. G.F. Cai, J.P. Tu, D. Zhou, J.H. Zhang, Q.Q. Xiong, X.Y. Zhao, X.L. Wang, and C.D. Gu, J. Phys. Chem. C 117, 15967 (2013).

    Article  CAS  Google Scholar 

  33. G.F. Cai, X. Wang, M.Q. Cui, P. Darmawan, J.X. Wang, A.L.S. Eh, and P.S. Lee, Nano Energy 12, 258 (2014).

    Article  Google Scholar 

  34. F. Hu, J.L. Xu, S.H. Zhang, J. Jiang, B. Yan, Y.C. Gu, M.J. Jiang, S.J. Lin, and S. Chen, J. Mater. Chem. C 6, 5707 (2018).

    Article  CAS  Google Scholar 

  35. A.J.C.D. Silva, F.A.R. Nogueira, J. Tonholo, and A.S. Ribeiro, Sol. Energy Mater. Sol. Cells 95, 2255 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (NSFC) (Nos. 51503134, 51721091 and 21876119) and Sichuan Province Science and Technology Foundation (No. 2017GZ0429) for the financial support. The authors would like to thank the analytical and testing center of Sichuan university, and we are grateful to Hui wang for the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Hu, F., Chen, S. et al. A Dual-Type Electrochromic Device Based on Complementary Silica/Conducting Polymers Nanocomposite Films for Excellent Cycling Stability. J. Electron. Mater. 48, 4797–4805 (2019). https://doi.org/10.1007/s11664-019-07273-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07273-9

Keywords

Navigation