Skip to main content
Log in

Depth Profile of Impurity Phase in Wide-Bandgap Cu(In1−x,Gax)Se2 Film Fabricated by Three-Stage Process

  • Topical Collection: 17th Conference on Defects (DRIP XVII)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

For copper indium gallium selenide [Cu(In1−x,Gax)Se2, CIGS]-based solar cells, defect states or impurity phase always form due to both the multinary compositions of CIGS film and the difficulty of controlling the growth process, especially for high Ga concentration. To further improve device performance, it is important to understand such formation of impurity phase or defect states during fabrication. In the work presented herein, the formation mechanism of impurity phase Cu2−δSe and its depth profile in CIGS film with high Ga content, in particular CuGaSe2 (i.e., CGS), were investigated by applying different growth conditions (i.e., normal three-stage process and two-cycle three-stage process). The results suggest that impurity phase Cu2−δSe is distributed nonuniformly in the film because of lack of Ga diffusion. The formed Cu2−δSe can be removed by etching the as-deposited CGS film with bromine-methanol solution, resulting in improved device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Scheer, T. Walter, H.W. Schock, M.L. Fearheiley, and H.J. Lewerenz, Appl. Phys. Lett. 63, 3294 (1993).

    Article  Google Scholar 

  2. M. Kaelin, D. Rudmann, and A.N. Tiwari, Sol. Energy 77, 749 (2004).

    Article  Google Scholar 

  3. J.-F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, and H.-W. Schock, J. Phys. Chem. B 104, 4849 (2000).

    Article  Google Scholar 

  4. N. Takahito, T. Soma, S. Hiroki, N. Kazuyoshi, and Y. Akira, Appl. Phys. Express 9, 092301 (2016).

    Article  Google Scholar 

  5. A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A.N. Tiwari, Nat. Mater. 12, 1107 (2013).

    Article  Google Scholar 

  6. M.G. Panthani, V. Akhavan, B. Goodfellow, J.P. Schmidtke, L. Dunn, A. Dodabalapur, P.F. Barbara, and B.A. Korgel, J. Am. Chem. Soc. 130, 16770 (2008).

    Article  Google Scholar 

  7. S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, Prog. Photovolt. 18, 453 (2010).

    Article  Google Scholar 

  8. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, Phys. Status Solidi-Rapid Res. Lett. 10, 583 (2016).

    Article  Google Scholar 

  9. R. Kamada, T. Yagioka, S. Adachi, A. Handa, K.F. Tai, T. Kato, and H. Sugimoto, in Proceedings of 43th IEEE PVSC (2016) pp. 1287–1291.

  10. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, Nat. Energy 2, 17032 (2017).

    Article  Google Scholar 

  11. M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, and A.W.H. Ho-Baillie, Prog. Photovolt. 25, 668 (2017).

    Article  Google Scholar 

  12. W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510 (1961).

    Article  Google Scholar 

  13. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, and R. Noufi, Prog. Photovolt. 16, 235 (2008).

    Article  Google Scholar 

  14. H. Komaki, S. Furue, A. Yamada, S. Ishizuka, H. Shibata, K. Matsubara, and S. Niki, Prog. Photovolt. 20, 595 (2012).

    Article  Google Scholar 

  15. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, and M. Powalla, Phys. Status Solidi-Rapid Res. Lett. 9, 28 (2015).

    Article  Google Scholar 

  16. G. Hanna, A. Jasenek, U. Rau, and H.W. Schock, Thin Solid Films 387, 71 (2001).

    Article  Google Scholar 

  17. Q. Cao, O. Gunawan, M. Copel, K.B. Reuter, S.J. Chey, V.R. Deline, and D.B. Mitzi, Adv. Energy Mater. 1, 845 (2011).

    Article  Google Scholar 

  18. P.K. Johnson, J.T. Heath, J.D. Cohen, K. Ramanathan, and J.R. Sites, Prog. Photovolt. 13, 579 (2005).

    Article  Google Scholar 

  19. Z. Djebbour, A. Darga, A. Migan Dubois, D. Mencaraglia, N. Naghavi, J.F. Guillemoles, and D. Lincot, Thin Solid Films 511–512, 320 (2006).

    Article  Google Scholar 

  20. T. Sakurai, H. Uehigashi, M.M. Islam, T. Miyazaki, S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, S. Niki, and K. Akimoto, Thin Solid Films 517, 2403 (2009).

    Article  Google Scholar 

  21. U. Malm and M. Edoff, Prog. Photovolt. 17, 306 (2009).

    Article  Google Scholar 

  22. X. Hu, T. Sakurai, A. Yamada, S. Ishizuka, S. Niki, and K. Akimoto, J. Appl. Phys. 116, 163703 (2014).

    Article  Google Scholar 

  23. S. Heo, J. Chung, H.-I. Lee, J. Lee, J.-B. Park, E. Cho, K. Kim, S.H. Kim, G.S. Park, D. Lee, J. Lee, J. Nam, J. Yang, D. Lee, H.Y. Cho, H.J. Kang, P.-H. Choi, and B.-D. Choi, Sci. Rep. 6, 30554 (2016).

    Article  Google Scholar 

  24. A. Uedono, M.M. Islam, T. Sakurai, C. Hugenschmidt, W. Egger, R. Scheer, R. Krause-Rehberg, and K. Akimoto, Thin Solid Films 603, 418 (2016).

    Article  Google Scholar 

  25. S. Nishiwaki, S. Siebentritt, P. Walk, and MCh Lux-Steiner, Prog. Photovolt. 11, 243 (2003).

    Article  Google Scholar 

  26. F. Larsson, N.S. Nilsson, J. Keller, C. Frisk, V. Kosyak, M. Edoff, and T. Törndahl, Prog. Photovolt. 25, 755 (2017).

    Article  Google Scholar 

  27. B. Marsen, B. Cole, and E.L. Miller, Sol. Energy Mater. Sol. Cells 92, 1054 (2008).

    Article  Google Scholar 

  28. M. Moriya, T. Minegishi, H. Kumagai, M. Katayama, J. Kubota, and K. Domen, J. Am. Chem. Soc. 135, 3733 (2013).

    Article  Google Scholar 

  29. W. Witte, R. Kniese, and M. Powalla, Thin Solid Films 517, 867 (2008).

    Article  Google Scholar 

  30. V. Lesnyak, R. Brescia, G.C. Messina, and L. Manna, J. Am. Chem. Soc. 137, 9315 (2015).

    Article  Google Scholar 

  31. M.M. Islam, A. Uedono, S. Ishibashi, K. Tenjinbayashi, T. Sakurai, A. Yamada, S. Ishizuka, K. Matsubara, S. Niki, and K. Akimoto, Appl. Phys. Lett. 98, 112105 (2011).

    Article  Google Scholar 

  32. M.M. Islam, A. Uedono, T. Sakurai, A. Yamada, S. Ishizuka, K. Matsubara, S. Niki, and K. Akimoto, J. Appl. Phys. 113, 064907 (2013).

    Article  Google Scholar 

  33. J.H. Shi, Z.Q. Li, D.W. Zhang, Q.Q. Liu, Z. Sun, and S.M. Huang, Prog. Photovolt. 19, 160 (2011).

    Article  Google Scholar 

  34. M.A. Hossain, M. Wang, and K.-L. Choy, ACS Appl. Mater. Interfaces 7, 22497 (2015).

    Article  Google Scholar 

  35. W. Witte, D. Abou-Ras, K. Albe, G.H. Bauer, F. Bertram, C. Boit, R. Brüggemann, J. Christen, J. Dietrich, A. Eicke, D. Hariskos, M. Maiberg, R. Mainz, M. Meessen, M. Müller, O. Neumann, T. Orgis, S. Paetel, J. Pohl, H. Rodriguez-Alvarez, R. Scheer, H.-W. Schock, T. Unold, A. Weber, and M. Powalla, Prog. Photovolt. 23, 717 (2015).

    Article  Google Scholar 

  36. J. Liu, D. Zhuang, M. Cao, X. Li, M. Xie, and D. Xu, Vacuum 102, 26 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Incorporated Administrative Agency, New Energy and Industrial Technology Development Organization (NEDO) under the Ministry of Economy, Trade, and Industry (METI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenghao Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 944 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Nazuka, T., Hagiya, H. et al. Depth Profile of Impurity Phase in Wide-Bandgap Cu(In1−x,Gax)Se2 Film Fabricated by Three-Stage Process. J. Electron. Mater. 47, 4944–4949 (2018). https://doi.org/10.1007/s11664-018-6120-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6120-1

Keywords

Navigation